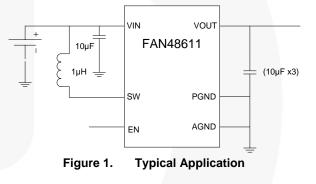


September 2014

FAN48611 2.5 MHz, Fixed-Output, Synchronous Tiny Boost® Regulator

Features

- Input Voltage Range: 2.7 V to 4.8 V
- Output Voltage: 5.25 V
- 350 mA Maximum Output Current
- Internal Synchronous Rectification
- True Load Disconnect
- Short-Circuit Protection
- 9-Bump, 1.215 mm x 1.215 mm, 0.4 mm Pitch, WLCSP
- Three External Components: 2012 1 µH Inductor, 0402 Case Size Input / Output Capacitors


Applications

- Class-D Audio Amplifier and USB OTG Supply
- Boost for Low-Voltage Li-Ion Batteries
- Smart Phones, Tablets, Portable Devices, and Wearables

Description

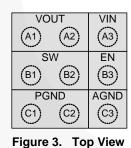
The FAN48611 is a low-power boost regulator designed to provide a minimum voltage regulated rail from a standard single-cell Li-Ion battery and advanced battery chemistries. Even below the minimum system battery voltage, the device maintains output voltage regulation. The combination of built-in power transistors, synchronous rectification, and low supply current suit the FAN48611 for battery-powered applications.

The FAN48611 is available in a 9-bump, 0.4 mm pitch, Wafer-Level Chip-Scale Package (WLCSP).

Ordering Information

Part Number	V _{OUT}	Operating Temperature Range	Package	Packing Method	Device Marking
FAN48611UC53X	5.25 V		9-Bump, 0.4 mm Pitch, Wafer- Level Chip-Scale Package (WLCSP)	Tape and Reel ⁽¹⁾	КН

Note:


1. Tape and reel specifications are available on www.fairchildsemi.com.

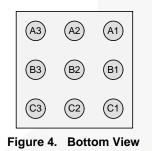

Block Diagram SW Q2B Q2A Ю ₽ VOUT Q2 VIN COUT C_{IN} Synchronous Rectifier Control PGND MODULATOR ΕN LOGIC AGND AND CONTROL Figure 2. IC Block Diagram

Table 1. Recommended Components

Component	Description	Vendor	Parameter	Тур.	Unit
1.4	2012 1.0.4. 0.6 mm May Height		L	1	μH
L1 2012, 1.9 A, 0.6 mm Max. Height	PIXC20120F1R0MDR	DCR (Series R)	175	mΩ	
C _{IN}	20%, 6.3 V, X5R, 0402	C1005X5R0J106M050BC TDK	С	10	μF
Cout	20%, 6.3 V, X5R, 0402	C1005X5R0J106M050BC TDK	С	10	μF

Pin Configuration

Pin Definitions

Pin #	Name	Description
A1, A2	VOUT	Output Voltage. This pin is the output voltage terminal; connect directly to COUT.
A3	VIN	Input Voltage . Connect to the Li-Ion battery input power source and the bias supply for the gate drivers.
B1, B2	SW	Switching Node. Connect to inductor.
B3	EN	Enable . When this pin is HIGH, the circuit is enabled. Connection to a logic voltage of 1.8 V and delivery voltage after UVLO typical voltage of 2.2 V is recommended.
C1, C2	PGND	Power Ground . This is the power return for the IC. C_{OUT} capacitor should be returned with the shortest path possible to these pins.
C3	AGND	Analog Ground . This is the signal ground reference for the IC. All voltage levels are measured with respect to this pin. Connect to PGND at a single point.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{IN}	Voltage on VIN Pin		-0.3	6.0	V
V _{OUT}	Voltage on VOUT Pin			6.0	V
	Voltage on SW Node	DC	-0.3	6.0	V
VSW	V _{SW} Voltage on SW Node	Transient: 10 ns, 3 MHz	-1.0	8.0	v
Vcc	Voltage on Other Pins		-0.3	6.0 ⁽²⁾	V
F0D	Electrostatia Discharge Dratestian Lough	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	5		1.27
ESD Electrostatic Discharge	Electrostatic Discharge Protection Level	Charged Device Model per JESD22-C101		2	kV
TJ	Junction Temperature		-40	+150	°C
T _{STG}	Storage Temperature		-65	+150	°C
ΤL	Lead Soldering Temperature, 10 Seconds			+260	°C

Note:

2. Lesser of 6.0 V or V_{IN} + 0.3 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

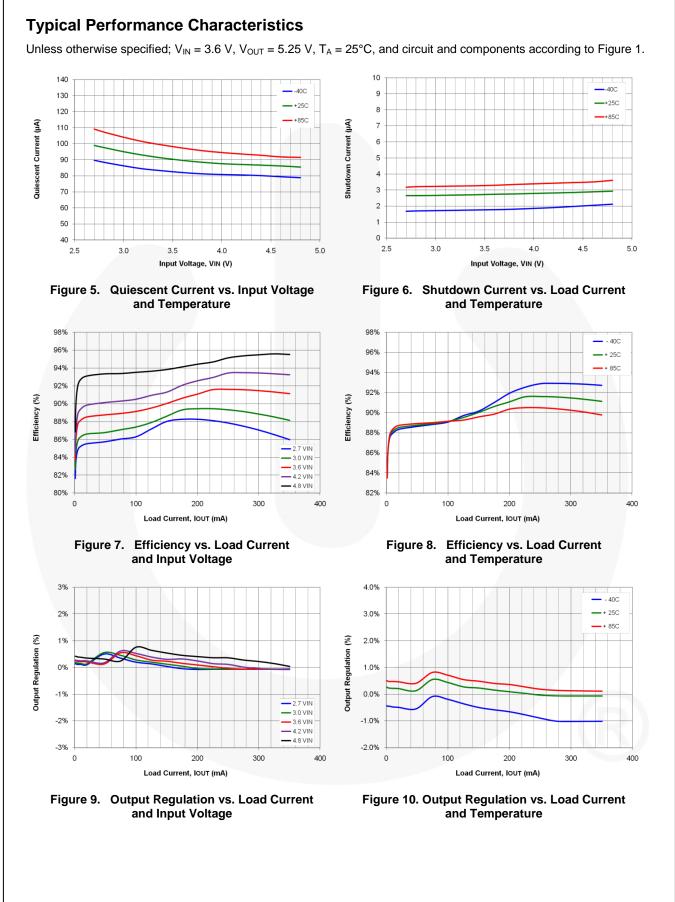
Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	2.7	4.8	V
I _{OUT}	Maximum Output Current	350		mA
T _A	Ambient Temperature	-40	+85	°C
TJ	Junction Temperature	-40	+125	°C

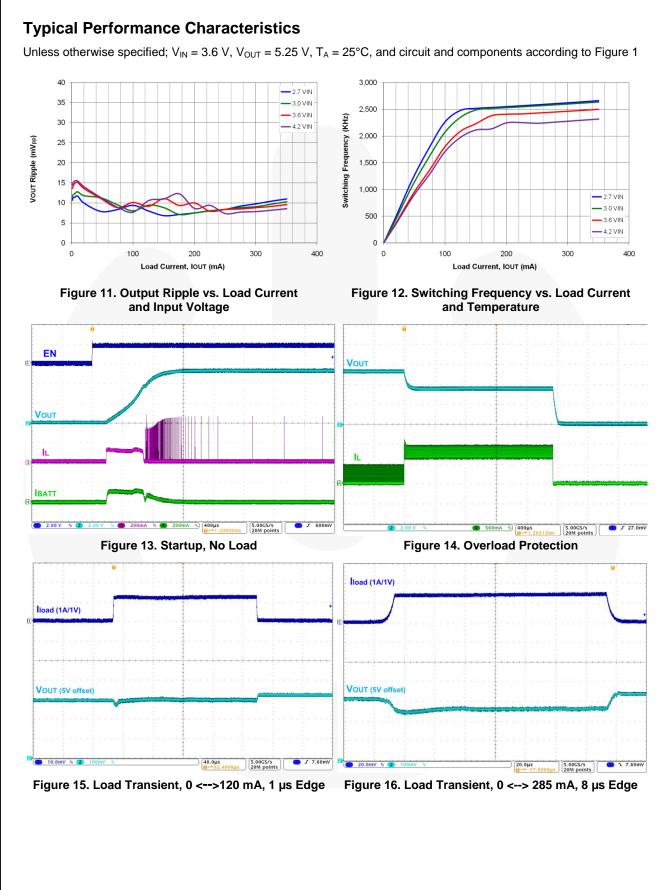
Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with fourlayer 2s2p boards with vias in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature, $T_{J(max)}$, at a given ambient temperature, T_A .

Symbol	Parameter	Typical	Unit
Θ _{JA}	Junction-to-Ambient Thermal Resistance	50	°C/W

Electrical Specifications


Recommended operating conditions, unless otherwise noted, circuit per Figure 1, V_{OUT} = 5.25 V, V_{IN} = 2.7 V to 4.8 V, and T_A = -40°C to 85°C. Typical values are given V_{IN} = 3.7 V and T_A = 25°C.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Power Su	pply			•			
		V _{IN} =3.7 V, I _{OUT} =0, EN=V _{IN}		90	140		
lα	V _{IN} Quiescent Current	Shutdown: EN=0, V _{IN} =3.7 V, V _{OUT} =0 V		2.7	10.0	μA	
V _{UVLO}	Under-Voltage Lockout	V _{IN} Rising		2.2	2.3	V	
V _{UVLO_HYS}	Under-Voltage Lockout Hysteresis			150		mV	
Inputs							
VIH	Enable HIGH Voltage		1.2			V	
VIL	Enable LOW Voltage				0.4	V	
I _{PD}	Current Sink Pull-Down	EN Pin, Logic HIGH		100		nA	
R _{LOW}	Low-State Active Pull-Down	EN Pin, Logic LOW	200	300	400	kΩ	
Outputs							
V _{REG}	Output Voltage Accuracy DC ⁽³⁾	Referred to V _{OUT}	-2		4	%	
I _{LK_OUT}	VIN-to-VOUT Leakage Current	V _{OUT} =0, EN=0, V _{IN} =2.7 V			1	μA	
I _{LK}	VOUT-to-VIN Reverse Leakage Current	V _{OUT} =5.3 V, EN=0, V _{IN} =2.7 V			3.5	μA	
VRIPPLE	Output Ripple ⁽⁴⁾	0 mA to 300 mA		30		mV	
.,		I _{LOAD} =0 mA <> 120 mA, t _R =t _F =1 μs		±30	1 3.5 0 0 0 0	.,	
V _{TRLOAD}	Load Transient ⁽⁴⁾	I _{LOAD} =0 mA <> 285 mA, t _R =t _F =8 μs		±90		mV	
V _{TRLINE}	Line Transient ⁽⁴⁾	V_{IN} =3.2 V <> 3.9 V, I _{LOAD} =120 mA t _R =t _F =7 µs		±50		mV	
		V _{IN} =3 V, I _{LOAD} =5 mA		85			
		V _{IN} =3 V, I _{LOAD} =200 mA		90			
η	Efficiency ⁽⁴⁾	V _{IN} =3.6 V, I _{LOAD} =200 mA		91		%	
		V _{IN} =3.6 V, I _{LOAD} =300 mA		92	92		
Timing							
fsw	Switching Frequency	V _{IN} =3.6 V, V _{OUT} =5.25 V, I _{LOAD} =300 mA	2.0	2.5	3.0	MHz	
t _{SS}	Soft-Start EN HIGH to Regulation ⁽⁴⁾	V_{IN} =3.0 V, V_{OUT} =5.25 V, I_{LOAD} =0 mA, C_{OUT} =3 x 10 µF		1000		μS	
I _{SS}	Input Peak Current			90	200	mA	
t _{RST}	FAULT Restart Timer ⁽⁴⁾			20		ms	
Power Sta	age	·			1		
R _{DS(ON)N}	N-Channel Boost Switch R _{DS(ON)}	V _{IN} =3.6 V, V _{OUT} =5.25 V		80	130	mΩ	
R _{DS(ON)P}	P-Channel Sync. Rectifier R _{DS(ON)}	V _{IN} =3.6 V, V _{OUT} =5.25 V		65	115	mΩ	
I_{V_LIM}	Boost Valley Current Limit	V _{OUT} =5.25 V		750		mA	
I _{V_LIM_SS}	Boost Soft-Start Valley Current Limit	VIN <vout <="" td="" vout_target<=""><td></td><td>375</td><td></td><td>Α</td></vout>		375		Α	
T _{150T}	Over-Temperature Protection (OTP)			150		°C	
T _{150H}	OTP Hysteresis			20		°C	

Notes:

^{3.} DC I_{LOAD} from 0 to 0.35 A. V_{OUT} measured from mid-point of output voltage ripple. Effective capacitance of C_{OUT} \geq 6 µF.

^{4.} Guaranteed by design and characterization; not tested in production.

FAN48611 — 2.5 MHz, Fixed-Output Synchronous Tiny Boost® Regulator

Typical Characteristics

Unless otherwise specified; V_{IN} =3.6 V, V_{OUT} =5.25 V, T_A =25°C, and circuit and components according to Figure 1

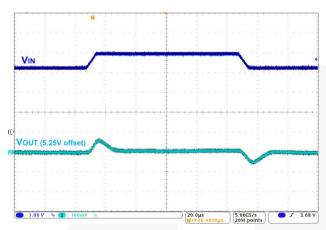


Figure 17. Line Transient, 3.2 <--> 3.9 V_{IN}, 7 μ s Edge, 120 mA Load

Functional Description

FAN48611 is a synchronous boost regulator, typically operating at 2.5 MHz in Continuous Conduction Mode (CCM), which occurs at moderate to heavy load current and low $V_{\rm IN}$ voltage.

1 4 10 10		
Mode	Description	Invoked When:
LIN	Linear Startup	$V_{IN} > V_{OUT}$
SS	Boost Soft-Start	V _{IN} < V _{OUT} < V _{OUT(TARGET)}
BST	Boost Mode	$V_{OUT} = V_{OUT(TARGET)}$

Table 2. Operating Modes

Boost Mode Regulation

The current-mode modulator achieves excellent transient response and smooth transitions between CCM and DCM operation. During CCM operation, the device maintains a switching frequency of about 2.5 MHz. In light-load operation (DCM), frequency is naturally reduced to maintain high efficiency.

Startup and Shutdown

When EN is LOW, all bias circuits are off and the regulator enters Shutdown Mode. During shutdown, current flow is prevented from VIN to VOUT, as well as reverse flow from VOUT to VIN. It is recommended to keep load current draw below 50 mA until the device successfully executes startup. Table 3 describes the startup sequence.

Start Mode	Entry	Exit	End Mode	Timeout (µs)
LIN1	V _{IN} > V _{UVLO} , EN=1	V _{OUT} > V _{IN} - 300 mV	SS	
		TIMEOUT	LIN2	512
LIN2	LIN1 Exit	V _{OUT} > V _{IN} - 300 mV	SS	
		TIMEOUT	FAULT	1024
66	LIN1 or	V _{OUT} = Vout(target)	BST	
SS	LIN2 Exit	OVERLOAD TIMEOUT	FAULT	64

Table 3. Boost Startup Sequence

LIN Mode

When EN is HIGH and $V_{IN} > V_{UVLO}$, the regulator attempts to bring V_{OUT} within 300 mV of V_{IN} using the internal fixed-current source from VIN (Q2). The current is limited to the I_{ss} set point, which is typically 90 mA.

The linear charging current is limited to a maximum of 200 mA to prevent any "brownout" situations where the system voltage drops too low.

During LIN1 Mode, if V_{OUT} reaches V_{IN} -300 mV, SS Mode is initiated. Otherwise, LIN1 Mode expires after 512 μ s and LIN2 Mode is entered.

In LIN2 Mode, the current source is equal to LIN1 current source I_{ss}, typically 90 mA. If V_{OUT} fails to reach V_{IN}-300 mV after 1024 μ s, a fault condition is declared and the device waits 20 ms (t_{RST}) to attempt an automatic restart.

Soft-Start (SS) Mode

Upon the successful completion of LIN Mode ($V_{OUT} \ge V_{IN}$ -300 mV), the regulator begins switching with boost pulses current limited to 50% of nominal level.

During SS Mode, if V_{OUT} fails to reach regulation during the SS ramp sequence for more than 64 µs, a fault is declared. If a large C_{OUT} is used, the reference is automatically stepped slower to avoid excessive input current draw.

Boost (BST) Mode

This is a normal operating mode of the regulator.

Fault State

The regulator enters Fault State under any of the following conditions:

- V_{OUT} fails to achieve the voltage required to advance from LIN Mode to SS Mode.
- V_{OUT} fails to achieve the voltage required to advance from SS Mode to BST Mode.
- Boost current limit triggers for 2 ms during BST Mode.
- V_{IN} V_{OUT} > 300 mV; this fault can occur only after successful completion of the soft-start sequence.
- $V_{IN} < V_{UVLO}$.

Once a fault is triggered, the regulator stops switching and presents a high-impedance path between VIN and VOUT. After 20 ms, automatic restart is attempted.

Over-Temperature

The regulator shuts down if the die temperature exceeds 150°C. Restart occurs when the IC has cooled by approximately 20°C.

Application Information

Output Capacitance (COUT)

The effective capacitance $(C_{EFF}^{(5)})$ of small, high-value ceramic capacitors decreases as the bias voltage increases, as illustrated in Figure 18.

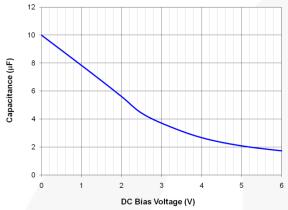


Figure 18. C_{EFF} for 10 µF, 0402, X5R, 6.3 V-Rated Capacitor (TDK C1005X5R0J106M050BC)

FAN48611 is guaranteed for stable operation with the minimum value of C_{EFF} ($C_{\text{EFF(MIN)}}$) outlined in Table 4

Table 4. Minimum CEFF Required for Stability

Ope	C _{EFF(MIN)}		
$V_{OUT}(V) = V_{IN}(V) = I_{LOAD}(mA)$ ($\mu\dot{F}$)			(μĒ)
5.25	2.7 to 4.8	0 to 350	6.0

Note:

5. C_{EFF} varies by manufacturer, capacitor material, and case size.

Inductor Selection

Recommended nominal inductance value is 1 μ H.

The FAN48611 employs valley-current limiting, so peak inductor current can reach 1.2 A for a short duration during overload conditions. Saturation causes the inductor current ripple to increase under high loading, as only the valley of the inductor current ripple is controlled.

Startup

Input current limiting is active during soft-start, which limits the current available to charge C_{OUT} and any additional capacitance on the V_{OUT} line. If the output fails to achieve regulation within the limits described in the Soft-Start section above, a fault occurs, causing the circuit to shut down. It waits about 20 ms before attempting a restart. If the total combined output capacitance is very high, the circuit may not start on the first attempt, but eventually achieves regulation if no load is present. If a high current load and high capacitance are both present during soft-start, the circuit may fail to achieve regulation and continually attempt soft-start, only to have the output capacitance discharged by the load when in Fault State.

Output Voltage Ripple

Output voltage ripple is inversely proportional to $C_{\text{OUT}}.$ During $t_{\text{ON}},$ when the boost switch is on, all load current is supplied by $C_{\text{OUT}}.$

$$V_{RIPPLE(P-P)} = t_{ON} \bullet \frac{I_{LOAD}}{C_{OUT}}$$
(1)

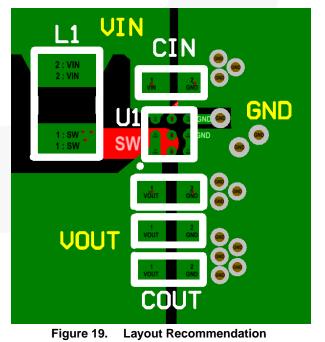
and

$$t_{ON} = t_{SW} \bullet D = t_{SW} \bullet \left(1 - \frac{V_{IN}}{V_{OUT}}\right)$$
(2)

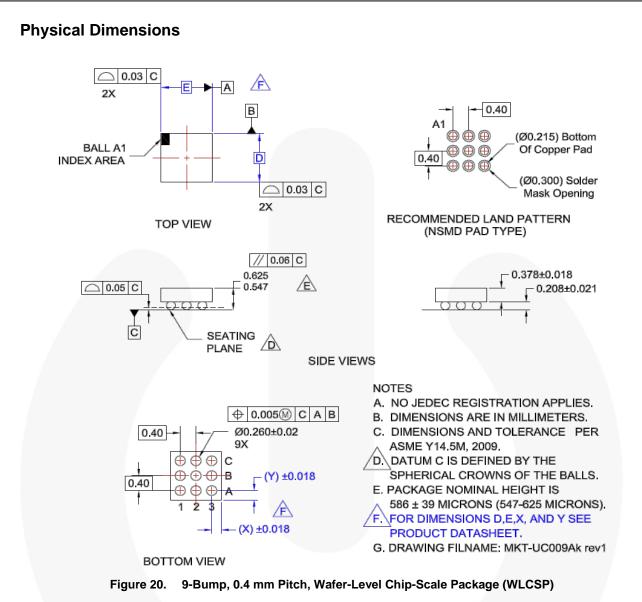
therefore:

$$V_{RIPPLE(P-P)} = t_{SW} \bullet \left(1 - \frac{V_{IN}}{V_{OUT}}\right) \bullet \frac{I_{LOAD}}{C_{OUT}}$$
(3)

$$t_{SW} = \frac{1}{f_{SW}} \tag{4}$$


The maximum V_{RIPPLE} occurs when V_{IN} is minimum and I_{LOAD} is maximum. For better ripple performance, more output capacitance can be added.

Layout Recommendations


The layout recommendations below highlight various top-copper pours by using different colors.

To minimize spikes at VOUT, C_{OUT} must be placed as close as possible to PGND and VOUT, as shown below.

For best thermal performance, maximize the pour area for all planes other than SW. The ground pour, especially, should fill all available PCB surface area and be tied to internal layers with a cluster of thermal vias.

© 2013 Fairchild Semiconductor Corporation FAN48611 • Rev. 1.0.1

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/dwg/UC/UC009Ak.pdf</u>

For current packing container specifications, visit Fairchild Semiconductor's online packaging area: <u>http://fairchildsemi/packing_dwg/PKG-UC009AK.pdf</u>.

Product-Specific Dimensions

D	Ш	X	Y
1.215 ±0.030 mm	1.215 ±0.030 mm	0.02075 mm	0.02075 mm

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™
AX-CAP [®] *	FRFET®
BitSiC™	Global Power Resource SM
Build it Now™	GreenBridge™
CorePLUS™	Green FPS™
CorePOWER™	Green FPS™ e-Series™
CROSSVOLT™	Gmax™
CTL™	GTO™
Current Transfer Logic™	IntelliMAX™
	ISOPLANAR [™]
Dual Cool™	Making Small Speakers Sound Louder
EcoSPARK [®]	and Better™
EfficientMax™	MegaBuck™
ESBC™	MICROCOUPLER™
<u> </u>	MicroFET™
	MicroPak™
Fairchild®	MicroPak2™
Fairchild Semiconductor®	MillerDrive™
FACT Quiet Series™ FACT [®]	MotionMax™
FAST®	mWSaver [®]
	OptoHiT™
FastvCore™	OPTOLOGIC®
FETBench™	OPTOPLANAR®
FPS™	

PowerTrench® PowerXS[™] Programmable Active Droop™ OFET OS™ Quiet Series™ RapidConfigure™ \bigcirc Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START Solutions for Your Success™ SPM[®] **STEALTH™** SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

EGENERAL®^{*} TinyBoost[®] TinyBuck[®] TinyLogic[®] TINYOPTO[™] TinyPOWer[™] TinyPWM[™] TinyPWM[™] TinyPWM[™] TranSiC[™] TriFault Detect[™] TRUECURRENT[®]* µSerDes[™]

П

AN48611

I

<u>2</u>5

MHz, Fixed-Output Synchronous Tiny Boost® Regulator

/ ScrDes[®] UHC[®] UItra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Surces. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change
Derliniteren		in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Preliminary	First Production	Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.