

PART NUMBER DG301AAA

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

DG300A, DG301A DG302A, DG303A

TTL Compatible CMOS Analog Switches

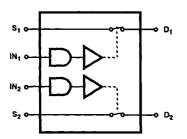
December 1993

Features

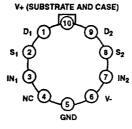
- Low Power Consumption
- Break-Before-Make Switching t_{OFF} 130ns, t_{ON} 150ns Typical
- . TTL, CMOS Compatible
- Low R_{DS(ON)} (≤ 50Ω)
- · Single Supply Operation
- True Second Source

Description

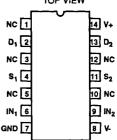
The DG300A through DG303A family of monolithic CMOS switches are truly compatible second source of the original manufacturer. The switches are latch-proof and are designed to block signals up to 30V_{P-P} when OFF. Featuring low leakage and low power consumption, these switches are ideally suited for precision application in instrumentation, communication, data acquisition and battery powered applications. Other key features include Break-Before-Make switching, TTL and CMOS compatibility, and low ON resistance. Single supply operation (for positive switch voltages) is possible by connecting V- to OV.


Ordering Information

TEMPERATURE	PACKAGE
-55°C to +125°C	14 Lead Ceramic DIP
-55°C to +125°C	14 Lead Ceramic DIP
-55°C to +125°C	14 Lead Ceramic DIP
-55°C to +125°C	14 Lead Ceramic DIP
-25°C to +85°C	14 Lead Ceramic DIP
-25°C to +85°C	14 Lead Ceramic DIP
-25°C to +85°C	14 Lead Ceramic DIP
-25°C to +85°C	14 Lead Ceramic DIP
0°C to +70°C	14 Lead Ceramic DIP
0°C to +70°C	14 Lead Ceramic DIP
0°C to +70°C	14 Lead Ceramic DIP
0°C to +70°C	14 Lead Ceramic DIP
0°C to +70°C	14 Lead Plastic DIP
0°C to +70°C	14 Lead Plastic DIP
	-55°C to +125°C -55°C to +125°C -55°C to +125°C -55°C to +125°C -55°C to +85°C -25°C to +85°C -25°C to +85°C -25°C to +85°C -25°C to +85°C -0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C

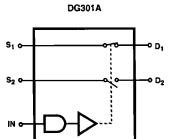

PART NUMBER	TEMPERATURE	PACKAGE
DG302ACJ	0°C to +70°C	14 Lead Plastic DIP
DG303ACJ	0°C to +70°C	14 Lead Plastic DIP
DG300AAA	-55°C to +125°C	10 Pin Metal Can
DG301AAA	-55°C to +125°C	10 Pin Metal Can
DG300ABA	-25°C to +85°C	10 Pin Metal Can
DG301ABA	-25°C to +85°C	10 Pin Metal Can
DG300ACA	0°C to +70°C	10 Pin Metal Can
DG301ACA	0°C to +70°C	10 Pin Metal Can
DG303ACY	0°C to +70°C	16 Lead SOIC (W)
DG300AAA/883B	-55°C to +125°C	10 Pin Metal Can
DG300AAK/883B	-55°C to +125°C	14 Lead Ceramic DIP
DG301AAA/883B	-55°C to +125°C	10 Pin Metal Can
DG301AAK/883B	-55°C to +125°C	14 Lead Ceramic DIP
DG302AAK/883B	-55°C to +125°C	14 Lead Ceramic DIP
DG303AAK/883B	-55°C to +125°C	14 Lead Ceramic DIP

Pinouts and Functional Diagrams



DG300A (METAL CAN) TOP VIEW

DG300A (CDIP, PDIP) TOP VIEW



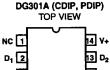
TRUTH TABLE

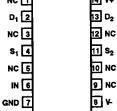
LOGIC	SWITCH
0	OFF
1	ON

Logic "0" ≤ 0.8V, Logic "1" ≥ 4.0V; Two SPST switches per package (switches shown for Logic "1" input)

Pinouts and Functional Diagrams (Continued)

DG301A (METAL CAN) TOP VIEW

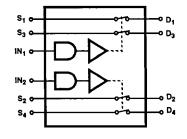

V+ (SUBSTRATE AND CASE)


D1 1 10 9 D2

S1 2 8 S2

IN 3 7 NC

NC 4 6 V-


TRUTH TABLE

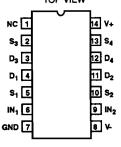
GND

LOGIC	SWITCH 1	SWITCH 2
0	OFF	ON
1	ON	OFF

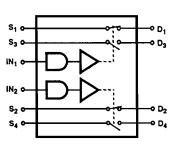
Logic "0" \leq 0.8V, Logic "1" \geq 4.0V; One SPDT switch per package (switches shown for Logic "1" input)

DG302A

TRUTH TABLE


LOGIC	SWITCH
0	OFF
1	ON

Logic "0"


0.8V, Logic "1"

4.0V;
Two DPST switch per package (switches shown for Logic "1" input)

DG302A (CDIP, PDIP) TOP VIEW

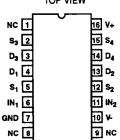
DG303A

DG303A (CDIP, PDIP) TOP VIEW

NC 1 14 V+

S₃ 2 13 S₄

D₃ 3 12 D4


D₁ 4 11 D₂

S₁ 5 10 S₂

IN₁ 6 9 IN₂

GND 7 8 V-

DG303ACY (SOIC) TOP VIEW

TRUTH TABLE

LOGIC	SWITCH 1 AND 2	SWITCH 3 AND 4
0	OFF	ON
1	ON	OFF

Logic "0" ≤ 0.8V, Logic "1" ≥ 4.0V; Two SPDT switch per package (switches shown for Logic "1" input)

Specifications DG300A, DG301A, DG302A, DG303A

Absolute Maximum Ratings	Thermal Information	
V+ to V	Thermal Resistance SOIC	
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca of the device at these or any other conditions above those indicated in the open Operating Conditions		nd operation
Operating Voltage Range ±15V Operating Temperature Range 0°C to +70°C (C Suffix) -25°C to +85°C (A Suffix) -55°C to +125°C	Input Low Voltage	4.0V MIN

Electrical Specifications V+ = +15V, V- = -15V, GND = 0V, TA = +25°C

			DG300A - DG303AA			DG300A - DG303AB/C			
PARAMETER	TEST CONDITION		MiN	(NOTE 6)	MAX	MIN	(NOTE 6) TYP	MAX	UNITS
DYNAMIC CHARACTERIS	TICS								
Turn-ON Time, toN	See Figure 3		•	150	300	-	150	-	ns
Turn-OFF Time, t _{OFF}	See Figure 3		-	130	250	•	130	-	ns
Break-Before-Make Interval, t _{ON} - t _{OFF}	See Figure 2, D	G301A/DG303A	-	50	•	•	50	-	ns
Charge Injection, Q	C _L = 10nF, R _S :	= 0, V _S = 0	-	3	·	•	3	-	m۷
Source OFF Capacitance, C _{S(OFF)}	f = 1MHz, V _{IN} = 0.8V or V _{IN} =	V _S = 0	-	14	-	-	14	-	pF
Drain OFF Capacitance, C _{D(OFF)}	4.0V	V _D = 0	-	14	•	-	14	•	pF
Channel ON Capacitance, C _{D(ON)} + C _{S(ON)}		$V_S = V_D = 0$	•	40	•	-	40	-	pF
Input Capacitance, CIN	f = 1MHz	V _{IN} = 0		6	-		6	•	рF
]	V _{IN} = 15V	-	7	-		7	-	pF
OFF Isolation (Note 8)	V _{IN} = 0, R _L = 1k, V _S = 1V _{RMS} , f = 500kHz		-	62	=	-	62	-	dΒ
Crosstalk (Channel-to- Channel)]			74		-	74	-	dΒ
INPUT	_				-				
Input Current with Voltage	V _{IN} = 5.0V		-1	-0.001	-	-1	-0.001	-	μА
High, I _{INH}	V _{IN} = 15.0V		-	0.001	1		0.001	1	μА
Input Current with Voltage Low, I _{INL}	V _{IN} = 0V		-1	-0.001	-	-1	-0.001	•	μА
ANALOG SWITCH				_					
Analog Signal Range, VANALOG	I _S = 10mA, V _{IN}	= 0.8V or 4V	-15	-	15	-15	-	15	٧

Specifications DG300A, DG301A, DG302A, DG303A

Electrical Specifications $V_{+} = +15V$, $V_{-} = -15V$, GND = 0V, $T_{A} = +25$ °C (Continued)

			DG	00A - DG30	BAA	DG3	00A - DG303	AB/C	
PARAMETER	TEST CONDITION		MIN	MIN TYP	MAX	MIN	(NOTE 6)	MAX	UNITS
Drain-Source ON Resistance, R _{DS(ON)}	V _{IN} = 0.8V or V _{IN} = 4.0V	I _S = -10mA, V _D = 10V	-	30	50	-	30	50	Ω
		I _S = 10mA, V _D = -10V	-	30	50	-	30	50	Ω
	V _{IN} = 0.8V or V _{IN} = 4.0V	V _S = 14V, V _D = -14V	•	0.1	1	-	0.1	5	nA
		V _S = -14V, V _D = 14V	-1	-0.1	-	-5	-0.1	•	nA
Drain OFF Leakage Current, I _{D(OFF)}	$V_{IN} = 0.8V$ or $V_{IN} = 4.0V$	V _S = -14V, V _D = 14V	-	0.1	1	-	0.1	5	nΑ
		V _S = 14V, V _D = -14V	-1	-0.1	-	-5	-0.1	-	nA
Drain ON Leakage	V _{IN} = 0.8V or	$V_D = V_S = 14V$	•	0.1	1	-	0.1	5	nA
Current, I _{D(ON)}	V _{IN} = 4.0V	V _D = V _S = -14V	-2	-0.1		-5	-0.1	-	nA
POWER SUPPLIES									
Positive Supply Current, I+	V _{IN} = 4V (One		-	0.23	0.5		0.23	0.5	mA
Negative Supply Current, I-	(All Others = 0)		-10	-0.001	-	-10	-0.001	•	μА
Positive Supply Current, I+	V _{IN} = 0.8V (All Inputs)		-	0.001	10	-	0.001	10	μΑ
Negative Supply Current, I-			-10	-0.001	•	-10	-0.001	•	μА

Electrical Specifications V+ = +15V, V- = -15V, GND = 0V, $T_A = Over$ Temperature Range

			DG300A - DG303AA			DG3			
PARAMETER	TEST CONDITION		MIN	(NOTE 6)	MAX	MIN	(NOTE 6) TYP	MAX	UNITS
INPUT					_				•
Input Current with Voltage	V _{IN} = 5.0V		-1		-	-	-	-	μА
High, I _{INH}	V _{IN} = 15.0V	-	· ·		1	-	-	-	μА
Input Current with Voltage Low, I _{INL}	V _{IN} = 0V		-1	•	•	-	-	-	μА
ANALOG SWITCH									
Analog Signal Range, V _{ANALOG}	1 ₈ = 10mA, V _{IN} = 0.8V or 4V		-15	•	15	-15	-	15	V
Drain-Source ON Resistance, R _{DS(ON)}	V _{IN} = 0.8V or V _{IN} = 4.0V	I _S = -10mA, V _D = 10V	-	-	75	•	- "	75	Ω
		I _S = 10mA, V _D = -10V			75	-	-	75	Ω
Source OFF Leakage Cur- rent, I _{S(OFF)}	V _{IN} = 0.8V or V _{IN} = 4.0V	V _S = 14V, V _D = -14V	-	•	100	-	-	100	nA
		V _S = -14V, V _D = 14V	-100	-	-	-100	-	-	nA
Drain OFF Leakage Current, I _{D(OFF)}	V _{IN} = 0.8V or V _{IN} = 4.0V	V _S = -14V, V _D = 14V	•	-	100	•	-	100	nA
		V _S = 14V, V _D = -14V	-100	•	-	-100	·	-	nA
Drain ON Leakage	V _{IN} = 0.8V or	V _D = V _S = 14V	-	-	100	-	- 1	100	nA
Current, I _{D(ON)}	$V_{IN} = 4.0V$	V _D = V _S = -14V	-200	-	-	-200	- 1	-	nΑ

Specifications DG300A, DG301A, DG302A, DG303A

Electrical Specifications V+ = +15V, V- = -15V, GND = 0V, TA = Over Temperature Range (Continued)

		DG3	DG300A - DG303AA			DG300A - DG303AB/C		
PARAMETER	TEST CONDITION	MIN	(NOTE 6)	MAX	MIN	(NOTE 6)	MAX	UNITS
POWER SUPPLIES								
Positive Supply Current, I+	V _{IN} = 4V (One Input) (All Others = 0)	1 -	-	1	-	•	_ ·	mA
Negative Supply Current,		-100	-	-	-	-	-	μА
Positive Supply Current, I+	V _{IN} = 0.8V (All Inputs)		•	100	-	-	-	μА
Negative Supply Current, I-		-100	-	-	-	-	-	μА

NOTES:

- 1. Signals on V_S, V_D or V_{IN} exceeding V+ or V- will be clamped by internal diodes. Limit diode toward current to maximum current ratings.
- 2. Device mounted with all leads soldered or welded to PC board.
- 3. Derate 11mW/°C above +75°C
- 4. Derate 6.5mW/°C above +25°C.
- 5. Derate 6mW/°C above +75°C.
- 6. For design only, not 100% tested.
- The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet.
- 8. OFF isolation = 20 log V_S/V_D , where V_S = input to OFF switch, and V_D = output.

Pin Description

PIN	SYMBOL	DESCRIPTION			
DG300A					
1	NC	No Connection			
2	D ₁	Drain (Output) terminal for Switch 1			
3	NC	No Connection			
4	S _t	Source (Input) terminal for Switch 1			
5	NC	No Connection			
6	IN ₁	Logic Control for Switch 1			
7	GND	Ground Terminal (Logic Common)			
8	V-	Negative Power Supply Terminal			
9	IN ₂	Logic Control for Switch 2			
10	NC	No Connection			
11	NC	No Connection			
12	S ₂	Source (Input) terminal for Switch 2			
13	D ₂	Drain (Output) terminal for Switch 2			
14	V+	Positive Power Supply Terminal			
DG301A					
1	NC	No Connection			
2	D ₁	Drain (Output) terminal for Switch 1			
3	NC	No Connection			
4	S ₁	Source (Input) terminal for Switch 1			
5	IN	Logic Control for Switches			
6	GND	Ground Terminal (Logic Common)			
7	٧-	Negative Power Supply Terminal			

PIN	SYMBOL	DESCRIPTION
8	NC	No Connection
9	NC	No Connection
10	S ₂	Source (Input) terminal for Switch 2
11	NC	No Connection
12	D ₂	Drain (Output) terminal for Switch 2
13	NC	No Connection
14	V+	Positive Power Supply Terminal
DG302A, DG303A		
1	NC	No Connection
2	S ₃	Source (Input) terminal for Switch 3
3	D ₃	Drain (Output) terminal for Switch 3
4	D ₁	Drain (Output) terminal for Switch 1
5	S ₁	Source (Input) terminal for Switch 1
6	IN ₁	Logic Control for Switch 1
7	GND	Ground Terminal (Logic Common)
8	V-	Negative Power Supply Terminal
9	IN ₂	Logic Control for Switch 2
10	S ₂	Source (Input) terminal for Switch 2
11	D ₂	Drain (Output) terminal for Switch 2
12	D ₄	Drain (Output) terminal for Switch 4
13	S ₄	Source (Input) terminal for Switch 4
14	V+	Positive Power Supply Terminal

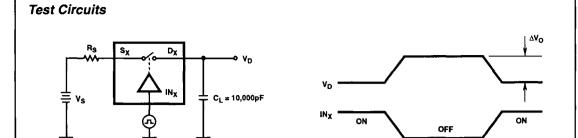


FIGURE 1. CHARGE INJECTION TEST CIRCUIT

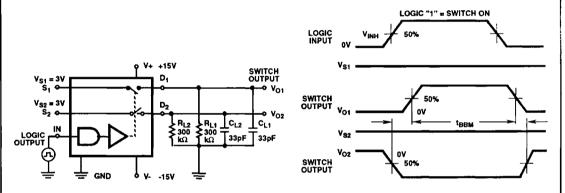


FIGURE 2. BREAK-BEFORE MAKE TEST CIRCUIT (DG301A, DG303A)

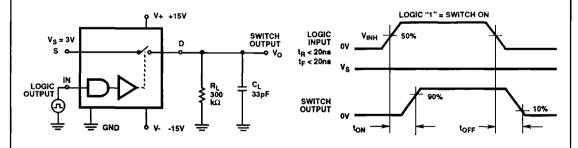


FIGURE 3. t_{ON} and t_{OFF} TEST CIRCUIT

Die Characteristics

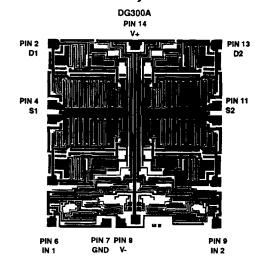
DIE DIMENSIONS:

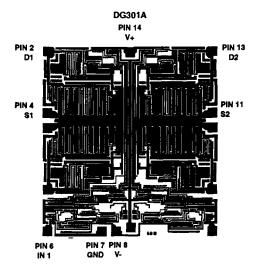
89 x 99 x 12 ± 2mils

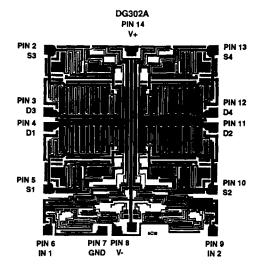
METALLIZATION:

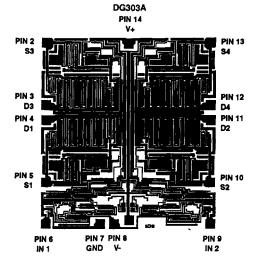
Type: Al

Thickness: 10kÅ ± 1kÅ


GLASSIVATION:


Type: PSG Over Nitride PSG Thickness: 7kÅ ± 1.4kÅ Nitride Thickness: 8kÅ ± 1.2kÅ


WORST CASE CURRENT DENSITY:


1 x 10⁵ A/cm²

Metallization Mask Layout

