Datasheet

PART NUMBER

54LS03BCA-ROCS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Datasheet

54LS03, 54LS12
Microcircuits, Digital, Bipolar Low-Power Schottky TTL, AND Gates, Monolithic Silicon

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

MILITARY SPECIFICATION
 MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, AND GATES, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.
This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 Scope. This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, positive NAND logic gate microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
1.2 Part number. The part number shall be in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device types. The device types shall be as follows:

Device type
01
02
03
04
05
06
07
08
09

Circuit
Quadruple, 2-input positive NAND gate
Quadruple, 2-input positive NAND gate (open collector output)
Hex, 1 -input inverter gate
Hex, 1 -input inverter gate (open collector output)
Triple, 3-input positive NAND gate
Triple, 3-input positive NAND gate (open collector output)
Dual, 4-input positive NAND gate
Dual, 4-input positive NAND gate (open collector output)
Single, 8-input positive NAND gate
1.2.2 Device class. The device class shall be the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outlines. The case outlines shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
A	GDFP5-F14 or CDFP6-F14	14	Flat pack
B	GDFP4-14	14	Flat pack
C	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
X	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.
1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V to +7.0 V
Input voltage range	-1.5 V at -18 mA to +5.5 V
Storage temperature range	-65° to $+150^{\circ} \mathrm{C}$
Maximum power dissipation, ($\mathrm{PD}^{\text {) } 1 /}$	6.1 mW dc
Lead temperature (soldering, 10 seconds).	$300^{\circ} \mathrm{C}$
Thermal resistance, junction to case (θ_{Jc}):	
Cases A, B, C, D, X, and 2	(See MIL-STD-1835)
Junction temperature (T_{J})	$175{ }^{\circ} \mathrm{C}$

1.4 Recommended operating conditions.

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 Specifications and Standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE
MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE
MIL-STD-883 - Test Method Standard for Microelectronics.
MIL-STD-1835 - Interface Standard Electronic Component Case Outlines
(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

[^0]
MIL-M-38510/300E

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Logic diagrams and terminal connections. The logic diagrams and terminal connections shall be as specified on figure 1.
3.3.2 Truth tables. The truth tables and logic equations shall be as specified on figure 2.
3.3.3 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VAS) upon request.
3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
3.5.1 Post-irradiation performance characteristics. The electrical performance characteristics of radiation hardness assured devices following exposure to the designated radiation levels are as specified in table III, subgroups 1 and 9 and apply at an ambient temperature of $+25^{\circ} \mathrm{C}$.
3.6 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 8 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

MIL-M-38510/300E

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$	Device types	Limits		Unit
				Min	Max	
High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 01,03,05 \\ 07,09 \end{gathered}$	2.5		V
Low level output voltage	V_{OL}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \end{aligned}$	All		0.4	V
Input clamp voltage	V IC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA} ; \\ & \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{aligned}$	All		-1.5	V
Collector cut-off current	$\mathrm{I}_{\text {cex }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 02,04,06 \\ 08 \\ \hline \end{gathered}$		100	$\mu \mathrm{A}$
High level input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	All		20	$\mu \mathrm{A}$
	I_{1+2}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	All		100	$\mu \mathrm{A}$
Low level input current	IIL	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$	$\begin{aligned} & 01,02,03 \\ & 04,05,06 \end{aligned}$	-30	-400	$\mu \mathrm{A}$
			07	-30	-380	
			08	-30	-440	
			09	0	-400	
Short circuit output current	los	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \underline{1}$	$\begin{gathered} 01,03,05 \\ 07,09 \end{gathered}$	-15	-100	mA
High level supply current	ICCH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	01, 02		1.6	mA
			03, 04		2.4	
			05		1.2	
			06		1.4	
			07, 08		0.8	
			09		0.5	
Low level supply current	$\mathrm{I}_{\text {CLL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	01, 02		4.4	mA
			03, 04		6.6	
			05, 06		3.3	
			07, 08		2.2	
			09		1.1	
Propagation delay time high-to-low level	tphL	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 01,03,05, \\ 07 \\ \hline \end{gathered}$	2	24	ns
			$\begin{gathered} 02,04,06 \\ 08 \end{gathered}$	2	55	
			09	2	38	
Propagation delay time low-to-high level	tpLH	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 01,03,05, \\ 07 \end{gathered}$	2	20	ns
			$\begin{gathered} 02,04,06, \\ 08 \\ \hline \end{gathered}$	2	50	
			09	2	32	

[^1]
MIL-M-38510/300E

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters	$1^{*}, 2,3,9$,	$1^{*}, 2,3,9$
	10,11	$1,2,3,9$,
Group A test requirements	$1,2,3$,	10,11
Group C end-point electrical parameters	$9,10,11$	$1,2,3,5$
Group D end-point electrical parameters	$9,10,11$	$1,2,3$

*PDA applies to subgroup 1.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups $4,5,6,7$, and 8 shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End-point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

FIGURE 1. Logic diagrams and terminal connections (top view).

FIGURE 1. Logic diagrams and terminal connections (top view) - Continued.

FIGURE 1. Logic diagrams and terminal connections (top view) - Continued.
Device types 01 and 02

Truth table each gate		
Input		Output
A	B	Y
L	L	H
H	L	H
L	H	H
H	H	L

Positive logic $Y=\overline{A B}$
Device types 03 and 04

Truth table each gate	
Input	Output
A	Y
L	H
H	L

Positive logic $Y=\bar{A}$

Device types 05 and 06

Truth table each gate			
Input			Output
A	B	C	Y
L	L	L	H
H	L	L	H
L	H	L	H
H	H	L	H
L	L	H	H
H	L	H	H
L	H	H	H
H	H	H	L

Positive logic $Y=\overline{A B C}$

Device types 07 and 08

Truth table each gate				
Input				
A	B	C	D	Y
L	L	L	L	H
H	L	L	L	H
L	H	L	L	H
H	H	L	L	H
L	L	H	L	H
H	L	H	L	H
L	H	H	L	H
H	H	H	L	H
L	L	L	H	H
H	L	L	H	H
L	H	L	H	H
H	H	L	H	H
L	L	H	H	H
H	L	H	H	H
L	H	H	H	H
H	H	H	H	L

Positive logic $Y=\overline{A B C D}$

Device type 09

Truth table													
Inputs											Output		
A	B	C	D	E	F	G	H	Y					
H	H	H	H	H	H	H	H	L					All other combinations of H and L at the inputs
:---													
give H output.													

Positive logic $Y=\overline{\mathrm{ABCDEFGH}}$
FIGURE 2. Truth table and logic equations.

NOTES:

1. The pulse generator has the following characteristics:
$\mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$, duty cycle $=50 \%$ and $\mathrm{Z}_{\text {OUT }}=50 \Omega$.
2. Inputs not under test are at 2.7 V .
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$, including scope probe, wiring, and stray capacitance.
4. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
5. Voltage measurements are to be made with respect to network ground terminal.

FIGURE 3. Switching time test circuit and waveforms for device types 01 through 09.

TABLE III. Group A inspection for device type 01.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open)

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	1Y	2A	2B	2 Y	GND	3 Y	3A	3B	4Y	4A	4B	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	3006	1	5.5 V	0.7 V	$-400 \mu \mathrm{~A}$	5.5 V	5.5 V		GND		5.5 V	5.5 V		5.5 V	5.5 V	4.5 V	1Y	2.5		V
			2	0.7 V	5.5 V	$-400 \mu \mathrm{~A}$	"	5.5 V		"		"	"		"	"	"	1 Y	"		"
			3	5.5 V	"		"	0.7 V	$-400 \mu \mathrm{~A}$	"		"	"		"	"	"	2 Y	"		"
			4	"	"		0.7 V	5.5 V	$-400 \mu \mathrm{~A}$	"		"	"		"	"	"	2 Y	"		"
			5	"	"		5.5 V	"		"	$-400 \mu \mathrm{~A}$	"	0.7 V		"	"	"	3 Y	"		"
			6	"	"		"	"		"	$-400 \mu \mathrm{~A}$	0.7 V	5.5 V		"	"	"	3 Y	"		"
			7	"	"		"	"		"		5.5 V	"	$-400 \mu \mathrm{~A}$	"	0.7 V	"	4Y	"		"
			8	"	"		"	"		"		5.5 V	"	$-400 \mu \mathrm{~A}$	0.7 V	5.5 V	"	4Y	"		"
	$\mathrm{V}_{\text {OL }}$	$\begin{gathered} \hline 3007 \\ " \\ " \\ " \end{gathered}$	9	2.0 V	2.0 V	4 mA	GND	GND		"		GND	GND		GND	GND	"	1 Y		0.4	"
			10	GND	GND		2.0 V	2.0 V	4 mA	"		GND	GND		"	"	"	2 Y		,	"
			11	"	"		GND	GND		"	4 mA	2.0 V	2.0 V		"	"	"	3 Y		"	"
			12	"	"		GND	GND		"		GND	GND	4 mA	2.0 V	2.0 V	"	4Y		"	"
	$\mathrm{V}_{\text {IC }}$		13	-18 mA						"							"	1A		-1.5	"
			14		-18 mA					"							"	1B		"	"
			15				-18 mA			"							"	2A		"	"
			16					-18mA		"							"	2B		"	"
			17							"		-18 mA					"	3A		"	"
			18							"			-18 mA					3B		"	"
			19							"					-18 mA		"	4A		"	"
			20							"						-18 mA	"	4B		"	"
	$\mathrm{I}_{\mathrm{H} 1}$	3010	21	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	$\mu \mathrm{A}$
			22	GND	2.7 V		GND	"		"		"	"		"	"	"	1B		"	"
			23	"	GND		2.7 V	"		"		"	"		"	"	"	2A		"	"
			24	"			GND	2.7 V		"		"	"		"	"	"	2B		"	"
			25	"	"		"	GND		"		2.7 V	"		"	"	"	3A		"	"
			26	"	"		"	"		"		GND	2.7 V		"	"	"	3B		"	"
			27	"	"		"	"		"		"	GND		2.7 V	"	"	4A		"	"
			28	"	"		"	"		"		"			GND	2.7 V	"	4B		"	"
	I_{1+2}		29	5.5 V	"		"	"		"		"	"			GND	"	1A		100	"
			30	GND	5.5 V		"	"		"		"	"		"	"	"	1B		"	"
			31	"	GND		5.5 V	"		"		"	"		"	"	"	2A		"	"
			32	"	"		GND	5.5 V		"		"	"		"	"	"	2B		"	"
			33	"	"		"	GND		"		5.5 V	"		"	"	"	3A		"	"
			34	"	"		"	"		"		GND	5.5 V		"	"	"	3B		"	"
			35	"	"		"	"		"		"	GND		5.5 V	"	"	4A		"	"
			36	"	"		"	"		"		"	GND		GND	5.5 V	"	4B		"	"
	ILL	3009	37	0.4 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	"	"	1A	$\underline{1}$	$\underline{1}$	"
			38	5.5 V	0.4 V		5.5 V	"		"		,	"		,	"	"	1B			"
			39	"	5.5 V		0.4 V	"		"		"	"		"	"	"	2A	"	"	"
			40	"	"		5.5 V	0.4 V		"		"	"		"	"	"	2B	"	"	"
			41	"	"		"	5.5 V		"		0.4 V	"		"	"	"	3A	"	"	"
			42	"	"		"	"		"		5.5 V	0.4 V		"	"		3B	"	"	"
			43	"	"		"	"				,	5.5 V		0.4 V	"	,	4A	"	"	"
			44	"	"		"	"		"		"	"		5.5 V	0.4 V	"	4B	"	"	"
	los	$\begin{gathered} 3011 \\ " \\ " \\ " \\ \hline \end{gathered}$	45	GND	GND	GND				"							"	1 Y	3/	3/	mA
			46				GND	GND	GND	"							"	2 Y	"	"	"
			47							"	GND	GND	GND				"	3 Y	"	"	"
			48							"				GND	GND	GND	"	4Y	"	"	"

TABLE III. Group A inspection for device type 01 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \text { Cases } \\ \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	1Y	2A	2B	2 Y	GND	3 Y	3A	3B	4Y	4A	4B	V_{cc}		Min	Max	
1	ICCH	3005	49	GND	GND		GND	GND		GND		GND	GND		GND	GND	5.5 V	V_{cc}		1.6	mA
$\mathrm{Tc}=25^{\circ} \mathrm{C}$	ICCL	3005	50	5.5 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	5.5 V	V_{Cc}		4.4	"
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																				
9$\mathrm{Tc}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {PHL }}$	3003Fig. 3	51	IN	2.7 V	OUT	2.7 V	2.7 V		GND		2.7 V	2.7 V		2.7 V	2.7 V	5.0 V	1 A to 1 Y	2	17	ns
			52	2.7 V	IN	OUT	2.7 V	"		"		"	"		"	"	"	1 B to 1 Y	"	"	"
			53	"	2.7 V		IN	"	OUT	"		"	"		"	"	"	2 A to 2 Y	"	"	"
			54	"	"		2.7 V	IN	OUT	"		"	"		"	"	"	2 B to 2Y	"	"	"
			55	"	"		,	2.7 V		"	OUT	IN	"		"	"	"	3 A to 3Y	"	"	"
			56	"	"		"	"		"	OUT	2.7 V	IN		"	"	"	3B to 3Y	"	"	"
			57	"	"		"	"		"		"	2.7 V	OUT	IN	"	"	4A to 4Y	"	"	"
			58	"	"		"	"		"		"	"	OUT	2.7 V	IN	"	4B to 4Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		59	IN	"	OUT	"	"		"		"	"		"	2.7 V	"	1 A to 1Y	"	15	"
			60	2.7 V	IN	OUT	"	"		"		"	"		"	"	"	1 B to 1Y	"	"	"
			61	"	2.7 V		IN	"	OUT	"		"	"		"	"	"	2 A to 2 Y	"	"	"
			62	"	"		2.7 V	IN	OUT	"		"	"		"	"	"	2 B to 2Y	"	"	"
			63	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	3A to 3Y	"	"	"
			64	"	"		"	"		"	OUT	2.7 V	IN		"	"	"	3 B to 3Y	"	"	"
			65	"	"		"	"		"		"	2.7 V	OUT	IN	"	"	4A to 4Y	"	"	"
			66	"	"		"	"		"		"	"	OUT	2.7 V	IN	"	4B to 4Y	"	"	"
$\begin{gathered} 10 \\ \mathrm{Tc}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PHL }}$		67	IN	2.7 V	OUT	"	"		"		"	"		"	2.7 V	"	1 A to 1 Y	"	24	"
			68	2.7 V	IN	OUT	"	"		"		"	"		"	,	"	1B to 1Y	"		"
			69	"	2.7 V		IN	"	OUT	"		"	"		"	"	"	2 A to 2 Y	"	"	"
			70	"	"		2.7 V	IN	OUT	"		"	"		"	"	"	2 B to 2 Y	"	"	"
			71	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	3 A to 3Y	"	"	"
			72	"	"		"	"		"	OUT	2.7 V	IN		"	"	"	3B to 3Y	"	"	"
			73	"	"		"	"		"			2.7 V	OUT	IN	"	"	4A to 4Y	"	"	"
			74	"	"		"	"		"		"	"	OUT	2.7 V	IN	"	4B to 4Y	"	"	"
	tplh		75	IN	"	OUT	"	"		"		"	"		"	2.7 V	"	1 A to 1 Y	"	20	"
			76	2.7 V	IN	OUT	"	"		"		"	"		"	"	"	1B to 1Y	"	-	"
			77	"	2.7 V		IN	"	OUT	"		"	"		"	"	"	2 A to 2 Y	"	"	"
			78	"	"		2.7 V	IN	OUT	"		"	"		"	"	"	2 B to 2Y	"	"	"
			79	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	3 A to 3 Y	"	"	"
			80	"	"		"	"		"	OUT	2.7 V	IN		"	"	"	3B to 3Y	"	"	"
			81	"	"		"	"		"		"	2.7 V	OUT	IN	"	"	4A to 4Y	"	"	"
			82	"	"		"	"		"		"	2.7 V	OUT	2.7 V	IN	"	4B to 4Y	"	"	"
11	Same tests, terminal conditions and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

1/ For case X and 2, pins not referenced are NC
$\underline{2}$ I/ limits in $\mu \mathrm{A}$ are as follows:

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	
$1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{~B}$,	$-120 /-360$	$-30 /-300$	$-150 /-360$	$-160 /-400$	$-150 /-380$	$-100 /-340$
$3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}$						

3/ los limits for circuit C: -20/-100; for circuits A, B, D, E, and F: -15/-100.

TABLE III. Group A inspection for device type 02.

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } \\ \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \\ \hline \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			$\begin{aligned} & \text { Case 1/ } \\ & \mathrm{X} \text { and } 2 \end{aligned}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	1Y	2A	2B	2 Y	GND	3 Y	3A	3B	4Y	4A	4B	V_{cc}		Min	Max	
1$\mathrm{Tc}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OL }}$	$\begin{gathered} \hline 3007 \\ " \\ " \\ " \end{gathered}$	1	2.0 V	2.0 V	4 mA	GND	GND		GND		GND	GND		GND	GND	4.5 V	1Y		0.4	V dc
			2	GND	GND		2.0 V	2.0 V	4 mA	"		GND	GND		"	"	"	2 Y		"	,
			3	"	"		GND	GND		"	4 mA	2.0 V	2.0 V		"	"	"	3 Y		"	"
			4	"	"		GND	GND		"		GND	GND	4 mA	2.0 V	2.0 V	"	4Y		"	"
	$\mathrm{I}_{\text {cex }}$		5	0.7 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	"	1Y		100	$\mu \mathrm{A}$
			6	5.5 V	0.7 V	5.5 V	5.5 V	"		"		"	"		"	"	"	1 Y		"	
			7	,	5.5 V		0.7 V	"	5.5 V	"		"	"		"	"	"	2 Y		"	"
			8	"	"		5.5 V	0.7 V	5.5 V	"		"	"		"	"	"	2 Y		"	"
			9	"	"		"	5.5 V		"	5.5 V	0.7 V	"		"	"	"	3 Y		"	"
			10	"	"		"	"		"	5.5 V	5.5 V	0.7 V		"	"	"	3 Y		"	"
			11	"	"		"	"		"		,	5.5 V	5.5 V	0.7 V	"	"	4Y		"	"
			12	"	"		"	"		"		"	5.5 V	5.5 V	5.5 V	0.7 V	"	4Y		"	"
	VIC		13	-18 mA						"							"	1A		-1.5 V	V
			14		-18 mA					"							"	1B		"	
			15				-18 mA			"							"	2A		"	"
			16					-18 mA		"							"	2B		"	"
			17							"		-18 mA					"	3A		"	"
			18							"			-18 mA				"	3B		"	"
			19							"					-18 mA		"	4A		"	"
			20							"						-18 mA	"	4B		"	"
	$\mathrm{l}_{\mathrm{H}+1}$	3010	21	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	$\mu \mathrm{A}$
			22	GND	2.7 V		GND	"		"		"	"		"	"	"	1B			"
			23	+	GND		2.7 V	"		"		"	"		"	"	"	2A		"	"
			24	"	"		GND	2.7 V		"		"	"		"	"	"	2B		"	"
			25	"	"		"	GND		"		2.7 V	"		"	"	"	3A		"	"
			26	"	"		"	"		"		GND	2.7 V		"	"	"	3B		-	"
			27	"	"		"	"		"		"	GND		2.7 V	"	"	4A		"	"
			28	"	"		"	"		"		"	"		GND	2.7 V	"	4B		"	"
			29	5.5 V	"		"	"		"		"	"		"	GND	"	1A		100	"
			30	GND	5.5 V		"	"		"		"	"		"	*	"	1B			"
			31	"	GND		5.5 V	"		"		"	"		"	"	"	2A		"	"
			32	"	"		GND	5.5 V		"		"	"		"	"	"	2B		"	"
			33	"	"		"	GND		"		5.5 V	"		"	"	"	3A		"	"
			34	"	"		"	"		"		GND	5.5 V		"	"	"	3B		"	"
			35	"	"		"	"		"		"	GND		5.5 V	"	"	4A		"	"
			36	"	"		"	"		"		"	GND		GND	5.5 V	"	4B		"	"
	$I_{1 L}$	3009	37	0.4 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	"	"	1A	$\underline{1}$	$\underline{1}$	"
			38	5.5 V	0.4 V		5.5 V	"		"		"	"		"	"	"	1B	"	"	"
			39	"	5.5 V		0.4 V	"		"		"	"		"	"	"	2A	"	"	"
			40	"	"		5.5 V	0.4 V		"		"	"		"	"	"	2B	"	"	"
			41	"	"		"	5.5 V		"		0.4 V	"		"	"	"	3A	"	"	"
			42	"	"		"	,		"		5.5 V	0.4 V		"	"	"	3B	"	"	"
			43	"	"		"	"		"			5.5 V		0.4 V	"		4A		-	"
			44	"	"		"	"		"		"	"		5.5 V	0.4 V	"	4B	"	"	"

See footnotes at end of device type 02

TABLE III. Group A inspection for device type 02 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open)

14

1/ For case X and 2, pins not referenced are NC.
2/ IIL limits in $\mu \mathrm{A}$ are as follows:

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
1A, 1B, 2A, 2B,	$-160 /-400$	$-30 /-300$	$-150 /-380$	$-160 /-400$	$-150 /-380$	$-100 /-340$
$3 A, 3 B, 4 A, 4 B$						

TABLE III. Group A inspection for device type 03.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

15

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } \\ \text { A,B,C,D } \\ \hline \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1Y	2A	2 Y	3A	3 Y	GND	4Y	4A	5 Y	5A	6 Y	6A	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	3006	1	0.7 V	$-400 \mu \mathrm{~A}$	5.5 V		5.5 V		GND		5.5 V		5.5 V		5.5 V	4.5 V	1Y	2.5		V
			2	5.5 V		0.7 V	$-400 \mu \mathrm{~A}$	5.5 V		"		"		"		"	"	2 Y	"		"
			3	"		5.5 V		0.7 V	$-400 \mu \mathrm{~A}$	"		"		"		"	"	3 Y	"		"
			4	"		"		5.5 V		"	$-400 \mu \mathrm{~A}$	0.7 V		"		"	"	4 Y	"		"
			5	"		"		"		"		5.5 V	$-400 \mu \mathrm{~A}$	0.7 V		"	"	5 Y	"		"
			6	"		"		"		"		5.5 V		5.5 V	$-400 \mu \mathrm{~A}$	0.7 V	"	6 Y	"		"
	$\mathrm{V}_{\text {OL }}$	3007	7	2.0 V	4 mA	GND		GND		"		GND		GND		GND	"	1 Y		0.4	"
			8	GND		2.0 V	4 mA	GND		"		"		"		"	"	2 Y		"	"
			9	"		GND		2.0 V	4 mA	"		"		"		"	"	3 Y		"	"
			10	"		"		GND		"	4 mA	2.0 V		"		"	"	4Y		"	"
			11	"		"		"		"		GND	4 mA	2.0 V		"	"	5 Y		"	"
			12	"		"		"		"		GND		GND	4 mA	2.0 V	"	6 Y		"	"
	V IC		13	-18 mA						"							"	1A		-1.5	"
			14			-18 mA				"							"	2A		"	"
			15					-18 mA		"							"	3A		"	"
			16							"		-18 mA					"	4A		"	"
			17							"				-18 mA			"	5A		"	"
			18							"						-18 mA	"	6A		"	"
	l_{1+1}	3010	19	2.7 V		GND		GND		"		GND		GND		GND	5.5 V	1A		20	$\mu \mathrm{A}$
			20	GND		2.7 V		GND		"		"		"		"	"	2A		"	"
			21	"		GND		2.7 V		"		"		"		"	"	3A		"	"
			22	"		"		GND		"		2.7 V		"		"	"	4A		"	"
			23	"		"		"		"		GND		2.7 V		"	"	5A		"	"
			24	"		"		"		"		"		GND		2.7 V	"	6A		"	"
	$\mathrm{l}_{1 \mathrm{H} 2}$		25	5.5 V		"		"		"		"		"		GND	"	1A		100	"
			26	GND		5.5 V		"		"		"		"		"	"	2A		"	"
			27	"		GND		5.5 V		"		"		"		"	"	3A		"	"
			28	"		"		GND		"		5.5 V		"		"	"	4A		"	"
			29	"		"		"		"		GND		5.5 V		"	"	5A		"	"
			30	"		"		"		"		GND		GND		5.5 V	"	6A		"	"
	ILL	3009	31	0.4 V		5.5 V		5.5 V		"		5.5 V		5.5 V		"	"	1A	2/	$\underline{1}$	"
			32	5.5 V		0.4 V		5.5 V		"		"		"		"	"	2A	"	"	"
			33	,		5.5 V		0.4 V		"		"		"		"	"	3A	"	"	"
			34	"		"		5.5 V		"		0.4 V		"		"	"	4A	"	"	"
			35	"		"		"		"		5.5 V		0.4 V		"	"	5A	"	"	"
			36	"		"		"		"		5.5 V		5.5 V		0.4 V	"	6A	"	"	"
	los	3011	37	GND	GND			"		"							"	1 Y	3/	3/	mA
			38			GND	GND			"							"	2 Y	"	"	"
			39					GND	GND	"							"	3 Y	"	"	"
			40							"	GND	GND					"	4Y	"	"	"
			41							"			GND	GND			"	5 Y	"	"	"
			42							"					GND	GND	"	6 Y	"	"	"

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

Subgroup	Symbol	MIL-STD- 883 method	$\begin{gathered} \hline \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1Y	2A	2 Y	3A	3 Y	GND	4Y	4A	5 Y	5A	6 Y	6A	$\mathrm{V}_{\text {cc }}$		Min	Max	
1	ICCH	3005	43	GND		GND	5.5 V	V_{Cc}		2.4	mA										
$\mathrm{TC}=25^{\circ} \mathrm{C}$	ICCL	3005	44	5,5 V		5.5 V		5.5 V		"		5.5 V		5.5 V		5.5 V	"	V_{Cc}		6.6	"
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {IC }}$ tests are omitted.																				
$\begin{gathered} 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$t_{\text {PHL }}$	$\begin{gathered} \hline 3003 \\ \text { (Fig. 3) } \end{gathered}$	45	IN	OUT	2.7 V		2.7 V		GND		2.7 V		2.7 V		2.7 V	5.0 V	1 A to 1 Y	2	17	ns
			46	2.7 V		IN	OUT	2.7 V		"		"		"		"	"	2 A to 2Y	"	"	"
			47	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3Y	"	"	"
			48	"		"		2.7 V		"	OUT	IN		"		"	"	4 A to 4 Y	"	"	"
			49	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5Y	"	"	"
			50	"		"		"		"		"		2.7 V	OUT	IN	"	6 A to 6Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		51	IN	OUT	"		"		"		"		"		2.7 V	"	1 A to 1 Y	"	15	"
			52	2.7 V		IN	OUT	"		"		"		"		"	"	2 A to 2 Y	"	"	"
			53	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3Y	"	"	"
			54	"		"		2.7 V		"	OUT	IN		"		"	"	4A to 4Y	"	"	"
			55	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5Y	"	"	"
			56	"		"		"		"		"		2.7 V	OUT	IN	"	6 A to 6Y	"	"	"
$\begin{array}{c\|} \hline 10 \\ \mathrm{Tc}=125^{\circ} \mathrm{C} \end{array}$	$\mathrm{t}_{\text {PHL }}$		57	IN	OUT	"		"		GND		"		"		2.7 V	"	1 A to 1 Y	"	24	"
			58	2.7 V		IN	OUT	"		"		"		"		"	"	2 A to 2Y	"	"	"
			59	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3Y	"	"	"
			60	"		"		2.7 V		"	OUT	IN		"		"	"	4A to 4Y	"	"	"
			61	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5Y	"	"	"
			62	"		"		"		"		"		2.7 V	OUT	IN	"	6 A to 6Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		63	IN	OUT	"		"		"		"		"		2.7 V	"	1 A to 1 Y	"	20	"
			64	2.7 V		IN	OUT	"		"		"		"		"	"	2 A to 2Y	"	"	"
			65	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3Y	"	"	"
			66	"		"		2.7 V		"	OUT	IN		"		"	"	4A to 4Y	"	"	"
			67	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5Y	"	"	"
			68	"		"		"		"		2.7 V		2.7 V	OUT	IN	"	6 A to 6Y	"	"	"
11	Same tests, terminal conditions and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

1/ For case X and 2 , pins not referenced are NC.
2/ ILL limits in $\mu \mathrm{A}$ are as follows

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
1 A 2 A, 3 A,	$-150 /-380$	$-30 /-300$	$-150 /-380$	$-160 /-400$	$-150 /-380$	$-100 /-340$
$4 \mathrm{~A}, 5 \mathrm{~A}, 6 \mathrm{~A}$						

3/ Ios limits for circuit C: $-20 /-100 \mathrm{~mA}$; for circuits A, B, D, E, and F: $-15 /-100 \mathrm{~mA}$.

TABLE III. Group A inspection for device type 04.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

17

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1Y	2A	2 Y	3A	3 Y	GND	4Y	4A	5 Y	5A	6 Y	6A	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {OL }}$	$\begin{gathered} \hline 3007 \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	1	2.0 V	4 mA	GND		GND	4.5 V	1 Y		0.4	"								
			2	GND		2.0 V	4 mA	GND		"		"		"		"	"	2 Y		"	"
			3	"		GND		2.0 V	4 mA	"		"		"		"	"	3 Y		"	"
			4	"		"		GND		"	4 mA	2.0 V		"		"	"	4Y		"	"
			5	"		"		"		"		GND	4 mA	2.0 V		"	"	5 Y		"	"
			6	"		"		"		"		GND		GND	4 mA	2.0 V	"	6 Y		"	"
	$\mathrm{I}_{\text {cex }}$		7	0.7 V	5.5 V	5.5 V		5.5 V		"		5.5 V		5.5 V		5.5 V	"	1Y		100	$\mu \mathrm{A}$
			8	5.5 V		0.7 V	5.5 V	5.5 V		"		"		"		"	"	2 Y		"	"
			9	"		5.5 V		0.7 V	5.5 V	"		"		"		"	"	3 Y		"	"
			10	"		"		5.5 V		"	5.5 V	0.7 V		"		"	"	4Y		"	"
			11	"		"		"		"		5.5 V	5.5 V	0.7 V		"	"	5 Y		"	"
			12	"		"		"		"		5.5 V		5.5 V	5.5 V	0.7 V	"	6 Y		"	"
	$V_{\text {IC }}$		13	-18 mA						"							"	1A		-1.5	V
			14			-18 mA				"							"	2A		"	"
			15					-18 mA		"							"	3A		"	"
			16							"		-18 mA					"	4A		"	"
			17							"				-18 mA			"	5A		"	"
			18							"						-18 mA	"	6A		"	"
	$\mathrm{I}_{\mathrm{H} 1}$	3010	19	2.7 V		GND		GND		"		GND		GND		GND	5.5 V	1A		20	$\mu \mathrm{A}$
			20	GND		2.7 V		GND		"		"		"		"	"	2A		"	"
			21	"		GND		2.7 V		"		"		"		"	"	3A		"	"
			22	"		"		GND		"		2.7 V		"		"	"	4A		"	"
			23	"		"		"		"		GND		2.7 V		"	"	5A		"	"
			24	"		"		"		"		"		GND		2.7 V	"	6A		"	"
			25	5.5 V		"		"		"		"		"		GND	"	1A		100	"
			26	GND		5.5 V		"		"		"		"		"	"	2A		,	"
			27	"		GND		5.5 V		"		"		"		"	"	3A		"	"
			28	"		"		GND		"		5.5 V		"		"	"	4A		"	"
			29	"		"		,		"		GND		5.5 V		"	"	5A		"	"
			30	"		"		"		"		GND		GND		5.5 V	"	6A		"	"
	IIL	$\begin{gathered} \hline 3009 \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	31	0.4 V		5.5 V		5.5 V		"		5.5 V		5.5 V		5.5 V	"	1A	2/	$\underline{1}$	"
			32	5.5 V		0.4 V		5.5 V		"		"		"		"	"	2A		-	"
			33	"		5.5 V		0.4 V		"		"		"		"	"	3A		"	"
			34	"		,		5.5 V		"		0.4 V		"		"	"	4A		"	"
			35	"		"		"		"		5.5 V		0.4 V		"	"	5A			"
			36	"		"		"		"		"		5.5 V		0.4 V	"	6A			"
	$\mathrm{I}_{\mathrm{CCL}}$	3005	37	"		"		"		"		"		"		5.5 V	"	V_{Cc}		6.6	mA
	$\mathrm{ICCH}^{\text {cher }}$	3005	38	GND		GND		GND		"		GND		GND		GND	"	V_{cc}		2.4	mA
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $T_{C}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																				

See footnotes at end of device type 04

TABLE III. Group A inspection for device type 04 - Continued.

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1Y	2A	2 Y	3A	3 Y	GND	4Y	4A	5 Y	5A	6Y	6A	V_{cc}		Min	Max	
9$\mathrm{Tc}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {PHL }}$	$\begin{gathered} 3003 \\ \text { (Fig. 3) } \end{gathered}$	39	IN	OUT	2.7 V		2.7 V		GND		2.7 V		2.7 V		2.7 V	5.0 V	1 A to 1 Y	2	36	ns
			40	2.7 V		IN	OUT	2.7 V		"		"		"		"	"	2 A to 2 Y	"	"	"
			41	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3 Y	"	"	"
			42	"		"		"		"	OUT	IN		"		"	"	4 A to 4 Y	"	"	"
			43	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5 Y	"	"	"
			44	"		"		"		"		"		2.7 V	OUT	IN	"	6 A to 6 Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		45	IN	OUT	"		"		"		"		"		2.7 V	"	1 A to 1 Y	"	40	"
			46	2.7 V		IN	OUT	"		"		"		"		"	"	2 A to 2 Y	"	"	"
			47	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3 Y	"	"	"
			48	"		"		2.7 V		"	OUT	IN		"		"	"	4 A to 4 Y	"	"	"
			49	"		"		,		"		2.7 V	OUT	IN		"	"	5 A to 5 Y	"	"	"
			50	"		"		"		"		"		2.7 V	OUT	IN	"	6 A to 6 Y	"	"	"
$\begin{gathered} 10 \\ \mathrm{Tc}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PHL }}$		51	IN	OUT	"		"		"		"		"		2.7 V	"	1 A to 1 Y	"	55	"
			52	2.7 V		IN	OUT	"		"		"		"		"	"	2 A to 2 Y	"	"	"
			53	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3 Y	"	"	"
			54	"		"		2.7 V		"	OUT	IN		"		"	"	4 A to 4 Y	"	"	"
			55	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5 Y	"	"	"
			56	"		"		"		"		"		2.7 V	OUT	IN	"	6 A to 6 Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		57	IN	OUT	"		"		"		"		"		2.7 V	"	1 A to 1 Y	"	60	"
			58	2.7 V		IN	OUT	"		"		"		"		"	"	2 A to 2 Y	"	"	"
			59	"		2.7 V		IN	OUT	"		"		"		"	"	3 A to 3 Y	"	"	"
			60	"		"		2.7 V		"	OUT	IN		"		"	"	4A to 4 Y	"	"	"
			61	"		"		"		"		2.7 V	OUT	IN		"	"	5 A to 5 Y	"	"	"
			62	-		-		"		"		2.7 V		2.7 V	OUT	IN	"	6 A to 6 Y	"	"	"
11	Same tests, terminal conditions and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

1/ For case X and 2, pins not referenced are NC.

2/ IIL limits in $\mu \mathrm{A}$ are as follows:

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
$14,2 A, 3 A$, $4 A, 5 A, 6 A$	$-150 /-380$	$-30 /-300$	$-150 /-380$	$-160 /-400$	$-150 /-380$	$-120 /-360$

TABLE III. Group A inspection for device type 05
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open)

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } \\ \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	2A	2B	2 C	2 Y	GND	3 Y	3A	3B	3C	1Y	1C	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	3006	1	0.7 V	5.5 V	5.5 V	5.5 V	5.5 V		GND		5.5 V	5.5 V	5.5 V	$-400 \mu \mathrm{~A}$	5.5 V	4.5 V	1Y	2.5		V
			2	5.5 V	0.7 V	"	"	"		"		"	"	"	"	5.5 V	"	1Y	"		"
			3	"	5.5 V	"	"	"		"		"	"	"	"	0.7 V	"	1Y	"		"
			4	"	"	0.7 V	"	"	$-400 \mu \mathrm{~A}$	"		"	"	"		5.5 V	"	2 Y	"		"
			5	"	"	5.5 V	0.7 V	"	-	"		"	"	"		"	"	2 Y	"		"
			6	"	"	"	5.5 V	0.7 V	"	"		"	"	"		"	"	2 Y	"		"
			7	"	"	"	"	5.5 V		"	$-400 \mu \mathrm{~A}$	0.7 V	"	"		"	"	3 Y	"		"
			8	"	"	"	"	"		"	"	5.5 V	0.7 V	"		"	"	3 Y	"		"
			9	"	"	"	"	"		"	"	V	5.5 V	0.7 V		"	"	3 Y	"		"
	V ${ }_{\text {OL }}$	3007	10	2.0 V	2.0 V	GND	GND	GND		"		GND	GND	GND	4 mA	2.0 V	"	1 Y		0.4	"
			11	GND	GND	2.0 V	2.0 V	2.0 V	4 mA	"		GND	GND	GND		GND	"	2 Y		"	"
			12	GND	GND	GND	GND	GND		"	4 mA	2.0 V	2.0 V	2.0 V		GND	"	3 Y		"	"
	VIC		13	-18 mA						"							"	1A		-1.5	"
			14		-18 mA					"							"	1B		"	"
			15			-18 mA				"							"	2A		"	"
			16				-18 mA			"							"	2B		"	"
			17					-18 mA		"							"	2 C		"	"
			18							"		-18 mA					"	3A		"	"
			19							"			-18 mA				"	3B		"	"
			20							"				-18 mA			"	3C		"	"
			21							"						-18 mA	"	1 C		"	"
	l_{1+1}	3010	22	2.7 V	GND	GND	GND	GND		"		GND	GND	GND		GND	5.5 V	1A		20	$\mu \mathrm{A}$
			23	GND	2.7 V	"	"	"		"		"	"			GND	"	1B		"	A
			24	*	GND	"	"	"		"		"	"			2.7 V	"	1 C		"	"
			25	"	"	2.7 V	"	"		"		"	"			GND	"	2A		"	"
			26	"	"	GND	2.7 V	"		"		"	"			"	"	2B		"	"
			27	"	"	"	GND	2.7 V		"		"	"			"	"	2 C		"	"
			28	"	"	"	"	GND		"		2.7 V	"			"	"	3A		"	"
			29	"	"	"	"	"		"		GND	2.7 V			"	"	3B		"	"
			30	"	"	"	"	"		"		"	GND	2.7 V		"	"	3C		"	"
	I_{1+2}		31	5.5 V	"	"	"	"		"		"	"			"	"	1A		100	
			32	GND	5.5 V	"	"	"		"		"	"	GND		"	"	1B		"	"
			33	,	GND	"	"	"		"		"	"			5.5 V	"	1 C		"	"
			34	"	"	5.5 V	"	"		"		"	"			GND	"	2A		"	"
			35	"	"	GND	5.5 V	"		"		"	"			"	"	2B		"	"
			36	"	"	"	GND	5.5 V		"		"	"			"	"	2 C		"	"
			37	"	"	"	"	GND		"		5.5 V	"			"	"	3A		"	"
			38	"	"	"	"	"		"		GND	5.5 V			"	"	3B		"	"
			39	"	"	"	"	"		"		"	GND	5.5 V		"	"	3C		"	"
	ILL	3009	40	0.4 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	5.5 V	"		5.5 V	"	1A	$\underline{1 /}$	$\underline{1}$	"
			41	5.5 V	0.4 V	"	"	"		"		"	"	"		"	"	1B	"	"	"
			42	,	5.5 V	"	"	"		"		"	"	"		0.4 V	"	1-	"	"	"
			43	"	"	0.4 V	"	"		"		"	"	"		5.5 V	"	2A	"	"	"
			44	"	"	5.5 V	0.4 V	"		"			"	"		"	"	2B	"	"	"
			45	"	"	"	5.5 V	0.4 V		"		"	"	"		"	"	2 C	"	"	"
			46	"	"	"	"	5.5 V		"		0.4 V	"	"		"	"	3A	"	"	"
			47	"	"	"	"	"		"		5.5 V	0.4 V	"		"	"	3B	"	"	"
			48	"	"	"	"	"		"		"	5.5 V	0.4 V		"	"	3C	"	"	"

TABLE III. Group A inspection for device type 05 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open)

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \hline \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	2A	2B	2 C	2 Y	GND	3 Y	3A	3B	3C	1Y	1C	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	los	3011	49	GND	GND					GND					GND	GND	5.5 V	1 Y	3/	3/	mA
			50			GND	GND	GND	GND	"							"	2 Y			"
			51							"	GND	GND	GND	GND			"	3 Y	"	"	"
	ICCH	3005	52	GND	GND	GND	GND	GND		"		GND	GND	GND		GND	"	$\mathrm{V}_{\mathrm{C}} \mathrm{C}$		1.2	"
	Same tests, terminal conditions and limits as for subgroup 1, except $T_{C}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {IC }}$ tests are omitted.											5.5 V	5.5 V	5.5 V		5.5 V	"	V_{cc}		3.3	"
2																					
3	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ c tests are omitted.																				
9Tc $=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {PHL }}$	3003 Fig. 3	54	IN	2.7 V	2.7 V	2.7 V	2.7 V		GND		2.7 V	2.7 V	2.7 V	OUT	2.7 V	5.0 V	1 A to 1 Y	2	17	ns
			55	2.7 V	IN	"	"	"		"		"	"	"	"	2.7 V	"	1B to 1 Y	"	"	"
			56	"	2.7 V	"	"	"		"		"	"	"	"	IN	"	1C to 1 Y	"	"	"
			57	"	"	IN	"	"	OUT	"		"	"	"		2.7 V	"	2 A to 2 Y	"	"	"
			58	"	"	2.7 V	IN	"	"	"		"	"	"		"	"	2 B to 2 Y	"	"	"
			59	"	"	"	2.7 V	IN	"	"		"	"	"		"	"	2 C to 2Y	"	"	"
			60	"	"	"	"	2.7 V		"	OUT	IN	"	"		"	"	3 A to 3Y	"	"	"
			61	"	"	"	"	"		"	"	2.7 V	IN	"		"	"	3 B to 3 Y	"	"	"
			62	"	"	"	"	"		"	"	"	2.7 V	IN		"	"	3 C to 3Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		63	IN	"	"	"	"		"		"	"	2.7 V	OUT	"	"	1 A to 1 Y	"	15	ns
			64	2.7 V	IN	"	"	"		"		"	"	"	"	"	"	1B to 1Y	"	"	"
			65	"	2.7 V	"	"	"		"		"	"	"	"	IN	"	1C to 1Y	"	"	"
			66	"	"	IN	"	"	OUT	"		"	"	"		2.7 V	"	2 A to 2 Y	"	"	"
			67	"	"	2.7 V	IN	"	"	"		"	"	"		"	"	2 B to 2 Y	"	"	"
			68	"	"	"	2.7 V	IN	"	"		"	"	"		"	"	2C to 2 Y	"	"	"
			69	"	"	"	"	2.7 V		"	OUT	IN	"	"		"	"	3 A to 3Y	"	"	"
			70	"	"	"	"	"		"	"	2.7 V	IN	"		"	"	3 B to 3Y	"	"	"
			71	"	"	"	"	"		"	"	"	2.7 V	IN		"	"	3C to 3Y	"	"	"
$\begin{gathered} 10 \\ \mathrm{Tc}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PHL }}$		72	IN	"	"	"	"		"		"	"	2.7 V	OUT	"	"	1 A to 1Y	"	24	ns
			73	2.7 V	IN	"	"	"		"		"	"	"	"	"	"	1B to 1Y	"	"	"
			74	"	2.7 V	"	"	"		"		"	"	"	"	IN	"	1C to 1 Y	"	"	"
			75	"	"	IN	"	"	OUT	"		"	"	"		2.7 V	"	2 A to 2 Y	"	"	"
			76	"	"	2.7 V	IN	"	"	"		"	"	"		"	"	2 B to 2 Y	"	"	"
			77	"	"	"	2.7 V	IN	"	"		"	"	"		"	"	2C to 2 Y	"	"	"
			78	"	"	"	"	2.7 V		"	OUT	IN	"	"		"	"	3 A to 3 Y	"	"	"
			79	"	"	"	"	"		"	,	2.7 V	IN	"		"	"	3B to 3Y	"	"	"
			80	"	"	"	"	"		"	"	"	2.7 V	IN		"	"	3C to 3Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		81	IN	"	"	"	"		"		"	"	2.7 V	OUT	"	"	1 A to 1Y	"	20	ns
			82	2.7 V	IN	"	"	"		"		"	"	"	"	"	"	1B to 1Y	"	"	"
			83	,	2.7 V	"	"	"		"		"	"	"	"	IN	"	1C to 1Y	"	"	"
			84	"	"	IN	"	"	OUT	"		"	"	"		2.7 V	"	2 A to 2 Y	"	"	"
			85	"	"	2.7 V	IN	"	"	"		"	"	"		"	"	2 B to 2 Y	"	"	"
			86	"	"	"	2.7 V	IN	"	"		"	"	"		"	"	2 C to 2 Y	"	"	"
			87	"	"	"	"	2.7 V		"	OUT	IN	"	"		"	"	3 A to 3 Y	"	"	"
			88	"	"	"	"	"		"	"	2.7 V	IN	"		"	"	3B to 3Y	"	"	"
			89	"	"	"	"	"		"	"	2.7 V	2.7 V	IN		"	"	3 C to 3 Y	"	"	"
11	Same tests, terminal conditions and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

TABLE III. Group A inspection for device type 05 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).
1/ For case X and 2, pins not referenced are NC.
르/ ILL limits in $\mu \mathrm{A}$ are as follows:

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
1 A, 1B, 1C,	$-120 /-360$	$-30 /-300$	$-150 /-380$	$-150 /-380$	$-160 /-400$	$-100 /-340$
$2 A, 2 B, 2 C$						
$1 C, 2 C, 3 C$						

3/ Ios limits for circuit C are: $-20 /-100 \mathrm{~mA}$; for circuit B are: $-30 /-300 \mathrm{~mA}$: for circuits A, D, E, and $F:-15 /-100 \mathrm{~mA}$.

TABLE III. Group A inspection for device type 06.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	2A	2B	2 C	2 Y	GND	3 Y	3A	3B	3C	1Y	1-	$\mathrm{V}_{\text {cc }}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {OL }}$	$\begin{gathered} 3007 \\ " \\ " \\ \hline \end{gathered}$	1	2.0 V	2.0 V	GND	GND	GND		GND		GND	GND	GND	4 mA	2.0 V	4.5 V	1 Y		0.4	V dc
			2	GND	GND	2.0 V	2.0 V	2.0 V	4 mA	"		GND	GND	GND		GND	"	2 Y		"	"
			3	GND	GND	GND	GND	GND		"	4 mA	2.0 V	2.0 V	2.0 V		GND	"	3 Y		"	"
	$\mathrm{I}_{\text {cex }}$		4	0.7 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	"	1Y		100	$\mu \mathrm{A}$				
			5	5.5 V	0.7 V	"	"	"		"		"	"	"	"	5.5 V	"	1 Y		"	"
			6	"	5.5 V	"	"	"		"		"	"	"	"	0.7 V	"	1Y		"	"
			7	"	"	0.7 V	"	"	5.5 V	"		"	"	"		5.5 V	"	2 Y		"	"
			8	"	"	5.5 V	0.7 V	"	,	"		"	"	"		"	"	2 Y		"	"
			9	"	"	"	5.5 V	0.7 V	"	"		"	"	"		"	"	2 Y		"	"
			10	"	"	"	"	5.5 V		"	5.5 V	0.7 V	"	"		"	"	3 Y		"	"
			11	"	"	"	"	,		"	"	5.5 V	0.7 V	"		"	"	3 Y		"	"
			12	"	"	"	"	"		"	"	"	5.5 V	0.7 V		"	"	3 Y		"	"
	VIC		13	-18 mA						"							"	1A		-1.5	V dc
			14		-18 mA					"							"	1B		"	"
			15							"						$-18 \mathrm{~mA}$	"	1 C		"	"
			16			-18 mA				"							"	2A		"	"
			17				-18 mA			"							"	2B		"	"
			18					-18 mA		"							"	2 C		"	"
			19							"		-18 mA					"	3A		"	"
			20							"			-18 mA				"	3B		"	"
			21							"				-18 mA			"	3C		"	"
	$\mathrm{I}_{\mathrm{H} 1}$	3010	22	2.7 V	GND	GND	GND	GND		"		GND	GND	GND		GND	5.5 V	1A		20	$\mu \mathrm{A}$
			23	GND	2.7 V	"	"	"		"		"	"	"		GND	"	1B		"	"
			24	"	GND	"	"	"		"		"	"	"		2.7 V	"	1 C		"	"
			25	"	"	2.7 V	"	"		"		"	"	"		GND	"	2A		"	"
			26	"	"	GND	2.7 V	"		"		"	"	"		"	"	2B		"	"
			27	"	"	"	GND	2.7 V		"		"	"	"		"	"	2 C		"	"
			28	"	"	"	"	GND		"		2.7 V	"	"		"	"	3A		"	"
			29	"	"	"	"	"		"		GND	2.7 V	"		"	"	3B		"	"
			30	"	"	"	"	"		"		"	GND	2.7 V		"	"	3C		"	"
	I_{1+2}		31	5.5 V	"	"	"	"		"		"	"	GND		"	"	1A		100	$\mu \mathrm{A}$
			32	GND	5.5 V	"	"	"		"		"	"	"		"	"	1B		"	"
			33	"	GND	"	"	"		"		"	"	"		5.5 V	"	1 C		"	"
			34	"	"	5.5 V	"	"		"		"	"	"		GND	"	2A		"	"
			35	"	"	GND	5.5 V	"		"		"	"	"		"	"	2B		"	"
			36	"	"	"	GND	5.5 V		"		"	"	"		"	"	2 C		"	"
			37	"	"	"	"	GND		"		5.5 V	"	"		"	"	3A		"	"
			38	"	"	"	"	"		"		GND	5.5 V	"		"	"	3B		"	"
			39	"	"	"	"	"		"			GND	5.5 V		"	"	3 C		"	"
	IIL	3009	40	0.4 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	5.5 V	"		5.5 V	"	1A	2/	$\underline{1}$	"
			41	5.5 V	0.4 V	,	,	.		"		.	,	"		5.5 V	"	1B			"
			42	"	5.5 V	"	"	"		"		"	"	"		0.4 V	"	1 C	"	"	"
			43	"	,	0.4 V	"	"		"		"	"	"		5.5 V	"	2A	"	"	"
			44	"	"	5.5 V	0.4 V	"		"			"	"		"	"	2B	"	"	"
			45	"	"	"	5.5 V	0.4 V		"		"	"	"		"	"	2 C	"	"	"
			46	"	"	"	"	5.5 V		"		0.4 V	"	"		"	"	3A	"	"	"
			47	"	"	"	"	"		"		5.5 V	0.4 V	"		"	"	3B	"	"	"
			48	"	"	"	"	"		"		5.5 V	5.5 V	0.4 V		"	"	3C	"	"	"
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and V Ic tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $T_{C}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {IC }}$ tests are omitted.																				

TABLE III. Group A inspection for device type 06 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open)

2/ IIL limits in $\mu \mathrm{A}$ are as follows

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
$1 A, 1 B, 1 C, 2 A, 2 B, 2 C, 3 A, 3 B, 3 C$	$-160 /-400$	$-30 /-300$	$-150 /-380$	$-160 /-400$	$-150 /-380$	$-150 /-380$

TABLE III. Group A inspection for device type 07
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open)

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ A, B, C, D \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case $1 /$ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	NC	1 C	1D	1Y	GND	2 Y	2A	2B	NC	2 C	2D	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	3006	1	0.7 V	5.5 V		5.5 V	5.5 V	$-400 \mu \mathrm{~A}$	GND		5.5 V	5.5 V		5.5 V	5.5 V	4.5 V	1Y	2.5 V		V
			2	5.5 V	0.7 V		5.5 V	"	"	"		"	"		"	"	"	1Y	"		"
			3	"	5.5 V		0.7 V	"	"	"		"	"		"	"	"	1Y	"		"
			4	"	"		5.5 V	0.7 V	"	"		"	"		"	"	"	1Y	"		"
			5	"	"		"	5.5 V		"	$-400 \mu \mathrm{~A}$	0.7 V	"		"	"	"	2 Y	"		"
			6	"	"		"	"		"	"	5.5 V	0.7 V		"	"	"	2 Y	"		"
			7	"	"		"	"		"	"	"	5.5 V		0.7 V	"	"	2 Y	"		"
			8	"	"		"	"		"	"	"	5.5 V		5.5 V	0.7 V	"	2 Y	"		"
	VoL	$\begin{aligned} & 3007 \\ & 3007 \\ & \hline \end{aligned}$	9	2.0 V	2.0 V		2.0 V	2.0 V	4 mA	"		GND	GND		GND	GND	"	1 Y		0.4	"
			10	GND	GND		GND	GND		"	4mA	2.0 V	2.0 V		2.0 V	2.0 V	"	2 Y		0.4	"
	$\mathrm{V}_{\text {IC }}$		11	-18 mA						"							"	1A		-1.5	"
			12		-18 mA					"							"	1B		"	"
			13				-18 mA			"							"	1 C		"	"
			14					-18mA		"							"	1D		"	"
			15							"		-18 mA					"	2A		"	"
			16							"			-18 mA				"	2B		"	"
			17							"					-18 mA		"	2 C		"	"
			18							"						-18 mA	"	2D		"	"
	$I_{1 H 1}$	3010	19	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	$\mu \mathrm{A}$
			20	GND	2.7 V		GND	"		"		"	"		"	"	"	1B		"	"
			21	"	GND		2.7 V	"		"		"	"		"	"	"	1C		"	"
			22	"	"		GND	2.7 V		"		"	"		"	"	"	1D		"	"
			23	"	"		-	GND		"		2.7 V	"		"	"	"	2A		"	"
			24	"	"		"	"		"		GND	2.7 V		"	"	"	2B		"	"
			25	"	"		"	"		"		"	GND		2.7 V	"	"	2 C		"	"
			26	"	"		"	"		"		"	"		GND	2.7 V	"	2D		"	"
	I_{1+2}		27	5.5 V	"		"	"		"		"	"			GND	"	1A		100	"
			28	GND	5.5 V		"	"		"		"	"		"	"	"	1B			"
			29	"	GND		5.5 V	"		"		"	"		"	"	"	1C		"	"
			30	"	"		GND	5.5 V		"		"	"		"	"		1D		"	"
			31	"	"		"	GND		"		5.5 V	"		"	"	"	2A		"	"
			32	"	"		"	"		"		GND	5.5 V		"	"	"	2B		"	"
			33	"	"		"	"		"		"	GND		5.5 V	"	"	2 C		"	"
			34	"	"		"	"		"		"	GND		GND	5.5 V	"	2D		"	"
	ILL	3009	35	0.4 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	"	"	1A	2/	$\underline{\underline{1}}$	"
			36	5.5 V	0.4 V		5.5 V	"		"		V	"		"	"	"	1B	$\underline{\sim}$	"	"
			37	,	5.5 V		0.4 V	"		"		"	"		"	"	"	1 C	"	"	"
			38	"	"		5.5 V	0.4 V		"		"	"		"	"	"	1D	"	"	"
			39	"	"		"	5.5 V		"		0.4 V	"		"	"	"	2A	"	"	"
			40		"		"	"		"		5.5 V	0.4 V		"	"	"	2B	"	"	"
			41	"	"		"	"		"		"	5.5 V		0.4 V	"	"	2 C	"	"	"
			42	"	"		"	"		"		"	5.5 V		5.5 V	0.4 V	"	2D	"	"	"
	los	3011	43	GND	GND		GND	GND	GND	"							"	1 Y	3/	$3 /$	mA
		3011	44							"	GND	GND	GND		GND	GND	"	2 Y	3/	$3 /$	"
	ICCH	3005	49	GND	GND		GND	GND		"		GND	GND		GND	GND	"	V_{Cc}		0.8	"
	ICCL	3005	50	5.5 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	"	V_{cc}		2.2	"
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ t tests are omitted.																				

See footnotes at end of device type 07.

TABLE III. Group A inspection for device type 07 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	NC	1C	1D	1Y	GND	2 Y	2A	2B	NC	2C	2D	V_{cc}		Min	Max	
$\begin{gathered} 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PHL }}$	3003 Fig. 3	47	IN	2.7 V		2.7 V	2.7 V	OUT	GND		2.7 V	2.7 V		2.7 V	2.7 V	5.0 V	1 A to 1 Y	2	17	ns
			48	2.7 V	IN		2.7 V	"	"	"		"	"		"	"	"	1B to 1 Y	"	"	"
			49	"	2.7 V		IN	"	"	"		"	"		"	"	"	1C to 1 Y	"	"	"
			50	"	"		2.7 V	IN	"	"		"	"		"	"	"	1D to 1Y	"	"	"
			51	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	2 A to 2 Y	"	"	"
			52	"	"		"	"		"	"	2.7 V	IN		"	"	"	2 B to 2 Y	"	"	"
			53	"	"		"	"		"	"	"	2.7 V		IN	"	"	2C to 2 Y	"	"	"
			54	"	"		"	"		"	"	"	"		2.7 V	IN	"	2D to 2Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		55	IN	"		"	"	OUT	"		"	"		"	2.7 V	"	1 A to 1 Y	"	15	"
			56	2.7 V	IN		"	"	"	"		"	"		"		"	1 B to 1Y	"	"	"
			57	"	2.7 V		IN	"	"	"		"	"		"	"	"	1C to 1 Y	"	"	"
			58	"	"		2.7 V	IN	"	"		"	"		"	"	"	1D to 1Y	"	"	"
			59	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	2 A to 2 Y	"	"	"
			60	"	"		"	"		"	"	2.7 V	IN		"	"	"	2 B to 2Y	"	"	"
			61	"	"		"	"		"	"	"	2.7 V		IN	"	"	2C to 2 Y	"	"	"
			62	"	"		"	"		"	"	"	"		2.7 V	IN	"	2D to 2 Y	"	"	"
$\begin{gathered} 10 \\ \mathrm{Tc}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PHL }}$	3003 Fig. 3	63	IN	"		"	"	OUT	"		"	"		"	2.7 V	5.0 V	1 A to 1 Y	"	24	"
			64	2.7 V	IN		"	"	"	"		"	"		"	"	"	1B to 1 Y	"	"	"
			65	"	2.7 V		IN	"	"	"		"	"		"	"	"	1C to 1Y	"	"	"
			66	"	"		2.7 V	IN	"	"		"	"		"	"	"	1D to 1Y	"	"	"
			67	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	2 A to 2 Y	"	"	"
			68	"	"		"	"		"	"	2.7 V	IN		"	"	"	2 B to 2 Y	"	"	"
			69	"	"		"	"		"	"	"	2.7 V		IN	"	"	2C to 2Y	"	"	"
			70	"	"		"	"		"	"	"	"		2.7 V	IN	"	2D to 2Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		71	IN	"		"	"	OUT	"		"	"		"	2.7 V	"	1 A to 1 Y	"	20	"
			72	2.7 V	IN		"	"	"	"		"	"		"	"	"	1B to 1 Y	"	"	"
			73	"	2.7 V		IN	"	"	"		"	"		"	"	"	1C to 1Y	"	"	"
			74	"	"		2.7 V	IN	"	"		"	"		"	"	"	1D to 1 Y	"	"	"
			75	"	"		"	2.7 V		"	OUT	IN	"		"	"	"	2 A to 2 Y	"	"	"
			76	"	"		"	"		"	"	2.7 V	IN		"	"	"	2 B to 2Y	"	"	"
			77	"	"		"	"		"	"	,	2.7 V		IN	"	"	2C to 2 Y	"	"	"
			78	"	"		"	"		"	"	"	"		2.7 V	IN	"	2D to 2Y	"	"	"
11	Same tests, terminal conditions and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

1/ For case X and 2, pins not referenced are NC
2/ ILL limits in $\mu \mathrm{A}$ are as follows:

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
1 A $, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}$, $2 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D}$	$-120 /-360$	$-30 /-300$	$-160 /-400$	$-120 /-360$	$-150 /-380$	$-100 /-340$

3/ los limits for circuit C: $-20 /-100 \mathrm{~mA}$; for circuits A, B, D, E, and F: $-15 /-100 \mathrm{~mA}$.

TABLE III. Group A inspection for device type 08.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \\ \hline \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	1A	1B	NC	1 C	1D	1Y	GND	2 Y	2A	2B	NC	2 C	2D	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 3007 \\ & 3007 \\ & \hline \end{aligned}$	1	2.0 V	2.0 V		2.0 V	2.0 V	4 mA	GND		GND	GND		GND	GND	4.5 V	1Y		0.4	V
			2	GND	GND		GND	GND		"	4mA	2.0 V	2.0 V		2.0 V	2.0 V	"	2 Y		0.4	V
	$\mathrm{I}_{\text {cex }}$		3	0.7 V	5.5 V		5.5 V	5.5 V	5.5 V	"		5.5 V	5.5 V		5.5 V	5.5 V	"	1Y		100	$\mu \mathrm{A}$
			4	5.5 V	0.7 V		5.5 V	"	"	"		"	"		"	"	"	1Y		"	
			5	"	5.5 V		0.7 V	"	"	"		"	"		"	"	"	1Y		"	"
			6	"	"		5.5 V	0.7 V	"	"		"	"		"	"	"	1 Y		"	"
			7	"	"		"	5.5 V		"	5.5 V	0.7 V	"		"	"	"	2 Y		"	"
			8	"	"		"	"		"	,	5.5 V	0.7 V		"	"	"	2 Y		"	"
			9	"	"		"	"		"	"	"	5.5 V		0.7 V	"	"	2 Y		"	"
			10	"	"		"	"		"	"	"	"		5.5 V	0.7 V	"	2 Y		"	"
	$\mathrm{V}_{\text {IC }}$		11	-18 mA						"							"	1A		-1.5	V
			12		-18 mA					"							"	1B		"	
			13				-18 mA			"							"	1C		"	"
			14					-18mA		"							"	1D		"	"
			15							"		-18 mA					"	2A		"	"
			16							"			$-18 \mathrm{~mA}$				"	2B		"	"
			17							"					-18 mA		"	2C		"	"
			18							"						-18 mA	"	2D		"	"
	I_{1+1}	3010	19	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	$\mu \mathrm{A}$
			20	GND	2.7 V		GND	"		"		"	"		"	"	"	1B		"	"
			21	"	GND		2.7 V	"		"		"	"		"	"	"	1 C		"	"
			22	"	"		GND	2.7 V		"		"	"		"	"	"	1D		"	"
			23	"	"		"	GND		"		2.7 V	"		"	"	"	2A		"	"
			24	"	"		"	"		"		GND	2.7 V		"	"	"	2B		"	"
			25	"	"		"	"		"		"	GND		2.7 V	"	"	2 C		"	"
			26	"	"		"	"		"		"	-		GND	2.7 V	"	2D		"	"
	$\mathrm{I}_{\mathbf{H} 2}$		27	5.5 V	"		"	"		"		"	"		,	GND	"	1A		100	"
			28	GND	5.5 V		"	"		"		"	"		"	"	"	1B		"	"
			29	"	GND		5.5 V	"		"		"	"		"	"	"	1C		"	"
			30	"	"		GND	5.5 V		"		"	"		"	"	"	1D		"	"
			31	"	"			GND		"		5.5 V	"		"	"	"	2A		"	"
			32	"	"		"	"		"		GND	5.5 V		"	"	"	2B		"	"
			33	"	"		"	"		"		"	GND		5.5 V	"	"	2 C		"	"
			34	"	"		"	"		"		"	GND		GND	5.5 V	"	2D		"	"
	ILL	$\begin{gathered} 3009 \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	35	0.4 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	"	"	1A	$2 /$	$\underline{1}$	"
			36	5.5 V	0.4 V		5.5 V	"		"		"	"		"	"	"	1B	"		"
			37	"	5.5 V		0.4 V	"		"		"	"		"	"	"	1 C	"	"	"
			38	"	"		5.5 V	0.4 V		"		"	"		"	"	"	1D	"	"	"
			39	"	"		"	5.5 V		"		0.4 V	"		"	"	"	2A	"	"	"
			40	"	"		"	"		"		5.5 V	0.4 V		"	"	"	2B	"	"	"
			41	"	"		"	"		"		"	5.5 V		0.4 V	"	"	2 C	"	"	"
			42	"	"		"	"		"		"	5.5 V		5.5 V	0.4 V	"	2D	"	"	"
	ICCL	3005	43	"	"		"	"		"		"	"		5.5 V	5.5 V	"	V_{C}		2.2	mA
	ICCH	3005	44	GND	GND		GND	GND		"		GND	GND		GND	GND	"	V_{cc}		0.8	mA
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ c tests are omitted.																				

TABLE III. Group A inspection for device type 08 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

1/ For case X and 2, pins not referenced are NC.
2/ IL limits in $\mu \mathrm{A}$ are as follows:

Measured terminal	Min/max limits for circuit					
	A	B	C	D	E	F
14 $2 A$ 1 B, 1C, 1D,	$-160 /-400$	$-30 /-300$	$-160 /-400$	$-200 /-440$	$-150 /-380$	$-120 /-360$

TABLE III. Group A inspection for device type 09.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{array}{c\|} \hline \text { Cases } \\ \text { A,B,C,D } \\ \hline \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	A	B	C	D	E	F	GND	Y	NC	NC	G	H	NC	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	3006	1	0.7 V	5.5 V	GND	$-400 \mu \mathrm{~A}$			5.5 V	5.5 V		4.5 V	Y	2.5 V		V				
			2	5.5 V	0.7 V	5.5 V	"	"	"	"	,			"	"		"	"	"		"
			3	"	5.5 V	0.7 V	"	"	"	"	"			"	"		"	"	"		"
			4	"	"	5.5 V	0.7 V	"	"	"	"			"	"		"	"	"		"
			5	"	"		5.5 V	0.7 V	"	"	"			"	"		"	"	"		"
			6	"	"		"	5.5 V	0.7 V	"	"			"	"		"	"	"		"
			7	"	"		"	"	5.5 V	"	"			0.7 V	"		"	"	"		"
			8	"	"		"	"	5.5 V	"	"			5.5 V	0.7 V		"	"	"		"
		3007	9	2.0 V	"	4 mA			2.0 V	2.0 V		"	"		0.4	"					
			10	-18 mA						"							"	A		-1.5	"
			11		-18 mA					"							"	B		"	"
			12			$-18 \mathrm{~mA}$				"							"	C		"	"
			13				-18 mA			"							"	D		"	"
			14					-18 mA		"							"	E		"	"
			15						-18 mA	"							"	F		"	"
			16							"				-18 mA			"	G		"	"
			17							"					-18 mA		"	H		"	"
	$\mathrm{I}_{\mathrm{H} 1}$	3010	18	2.7 V	GND	GND	GND	GND	GND	"				GND	GND		5.5 V	A		20	$\mu \mathrm{A}$
			19	GND	2.7 V	GND	"	"	"	"				"	"		"	B		"	"
			20	"	GND	2.7 V	"	"	"	"				"	"		"	C		"	"
			21	"	"	GND	2.7 V	"	"	"				"	"		"	D		"	"
			22	"	"	"	GND	2.7 V	"	"				"	"		"	E		"	"
			23	"	"	"		GND	2.7 V	"				"	"		"	F		"	"
			24	"	"	"	"	"	GND	"				2.7 V	"		"	G		"	"
			25	"	"	"	"	"	"	"				GND	2.7 V		"	H		"	"
	$\mathrm{I}_{\mathrm{H} 2}$		26	5.5 V	"	"	"	"	"	"				"	GND		"	A		100	"
			27	GND	5.5 V	"	"	"	"	"				"			"	B		"	"
			28	"	GND	5.5 V	"	"	"	"				"	"		"	C		"	"
			29	"	"	GND	5.5 V	"	"	"				"	"		"	D		"	"
			30	"	"		GND	5.5 V	"	"				"	"		"	E		"	"
			31	"	"		"	GND	5.5 V	"				"	"		"	F		"	"
			32	"	"		"	"	GND	"				5.5 V	"		"	G		"	"
			33	"	"		"	"	GND	"				GND	5.5 V		"	H		"	"
	ILL	$\begin{gathered} \hline 3009 \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	34	0.4 V	5.5 V	"				5.5 V	,		"	A	2/	$\underline{1}$	"				
			35	5.5 V	0.4 V	5.5 V	"	"	"	"					"		"	B			"
			36	"	5.5 V	0.4 V	"	"	"	"				"	"		"	C	"	"	"
			37	"	"	5.5 V	0.4 V	"	"	"				"	"		"	D	"	"	"
			38	"	"	.	5.5 V	0.4 V	"	"				"	"		"	E	"	"	"
			39	"	"	"	,	5.5 V	0.4 V	"				"	"		"	F	"	"	"
			40	"	"	"	"	"	5.5 V	"				0.4 V	"		"	G	"	"	"
			41	"	"	"	"	"	5.5 V	"				5.5 V	0.4 V		"	H	"	"	"
	los	3011	42	GND	GND	GND	GND	GND	GND	"	GND			GND	GND		"	Y	3/	3/	mA
	$\mathrm{I}_{\mathrm{CCH}}$	3006	43	GND	GND	GND	GND	GND	GND	"				GND	GND		"	V_{cc}		0.5	"
	ICCL	3005	44	5.5 V	"				5.5 V	5.5 V		"	V_{Cc}		1.1	"					
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ tests are omitted.																				
3	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$, and $\mathrm{V}_{\text {I }}$ tests are omitted.																				

TABLE III. Group A inspection for device type 09 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$ or low $\leq 0.7 \mathrm{~V}$ or open),

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
			Case 1/ X and 2	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
			Test no.	A	B	C	D	E	F	GND	Y	NC	NC	G	H	NC	V_{cc}		Min	Max	
$\begin{gathered} 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PHL }}$	3003 Fig. 3	45	IN	2.7 V	GND	OUT			2.7 V	2.7 V		5.0 V	A to Y	2	28	ns				
			46	2.7 V	IN	2.7 V	"	"	"	"	"			"	"		"	B to Y	"	"	"
			47	"	2.7 V	IN	"	"	"	"	"			"	"		"	C to Y	"	"	"
			48	"	"	2.7 V	IN	"	"	"	"			"	"		"	D to Y	"	"	"
			49	"	"	"	2.7 V	IN	"	"	"			"	"		"	E to Y	"	"	"
			50	"	"	"	"	2.7 V	IN	"	"			"	"		"	F to Y	"	"	"
			51	"	"	"	"	"	2.7 V	"	"			IN	"		"	G to Y	"	"	"
			52	"	"	"	"	"	"	"	"			2.7 V	IN		"	H to Y	"	"	"
	$\mathrm{t}_{\text {PLH }}$		53	IN	"	"	"	"	"	"	"			"	2.7 V		"	A to Y	"	20	"
			54	2.7 V	IN	"	"	"	"	"	"			"	"		"	B to Y	"	"	"
			55	"	2.7 V	IN	"	"	"	"	"			"	"		"	C to Y	"	"	"
			56	"	"	2.7 V	IN	"	"	"	"			"	"		"	D to Y	"	"	"
			57	"	"	"	2.7 V	IN	"	"	"			"	"		"	E to Y	"	"	"
			58	"	"	"	"	2.7 V	IN	"	"			"	"		"	F to Y	"	"	"
			59	"	"	"	"	"	2.7 V	"	"			IN	"		"	G to Y	"	"	"
			60	"	"	"	"	"	"	"	"			2.7 V	IN		"	H to Y	"	"	"
$\begin{gathered} 10 \\ \mathrm{Tc}=125^{\circ} \mathrm{C} \end{gathered}$	tPHL 		61	IN	"	"	"	"	"	"	"			"	2.7 V		"	A to Y	"	38	"
			62	2.7 V	IN	"	"	"	"	"	"			"	"		"	B to Y	"	"	"
			63	"	2.7 V	IN	"	"	"	"	"			"	"		"	C to Y	"	"	"
			64	"	"	2.7 V	IN	"	"	"	"			"	"		"	D to Y	"	"	"
			65	"	"	"	2.7 V	IN	"	"	"			"	"		"	E to Y	"	"	"
			66	"	"	"	"	2.7 V	IN	"	"			"	"		"	F to Y	"	"	"
			67	"	"	"	"	"	2.7 V	"	"			IN	"		"	G to Y	"	"	"
			68	"	"	"	"	"	"	"	"			2.7 V	IN		"	H to Y	"	"	"
	${ }^{\text {tPLH }}$	$"$ $"$	69	IN	"	"	"	"	"	"	"			"	2.7 V		"	A to Y	"	32	"
			70	2.7 V	IN	"	"	"	"	"	"			"	"		"	B to Y	"	"	"
			71	"	2.7 V	IN	"	"	"	"	"			"	"		"	C to Y	"	"	"
			72	"	"	2.7 V	IN	"	"	"	"			"	"		"	D to Y	"	"	"
			73	"	"	"	2.7 V	IN	"	"	"			"	"		"	E to Y	"	"	"
			74	"	"	"	"	2.7 V	IN	"	"			"	"		"	F to Y	"	"	"
			75	"	"	"	"	"	2.7 V	"	"			IN	"		"	G to Y	"	"	"
			76	"	"	"	"	"	2.7 V	"	"			2.7 V	IN		"	H to Y	"	"	"
11	Same tests, terminal conditions and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

1/ For case X and 2, pins not referenced are NC.

2/ IL limits in $\mu \mathrm{A}$ are as follows:

Measured terminal Min/max limits for circuit A B C D E F A, B, C, D, E, F, G, H $-0 /-360$ $-30 /-300$ $-160 /-400$ $-160 /-400$ $-150 / 380$ $-160 /-400$
3/ Ios limits for circuit C: $-20 /-100 \mathrm{~mA}$; for circuits A, B, D, E, and F: $-15 /-100 \mathrm{~mA}$.

[^2]
MIL-M-38510/300E

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.
6. NOTES
6.1 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. Complete part number (see 1.2).
c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
j. Requirements for "JAN" marking.
6.3 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

MIL-M-38510/300E

6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:
GND Ground zero voltage potential
$I_{\text {IN }}$ Current flowing into an input terminal
VIC \qquad Input clamp voltage
VIN Voltage level at an input terminal
6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming shall not affect the part number.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users.

Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54 LS 00
02	54 LS 03
03	54 LS 04
04	54 LS 05
05	54 LS 10
06	54 LS 12
07	54LS20
08	54 LS 22
09	54 LS 30

6.8 Manufacturers' designation. Manufacturers' circuits, which form a part of this specification, are designated with an "X" as shown in table IV herein.

TABLE IV. Substitutability and manufacturers' designation.

Manufacturer Device type								Circuit A Texas Instru- ments Inc.	Circuit B Corpnetics Coration	Circuit C Semiconductor Corp	Raytheon Company	Motorola Inc	Circuit F Semiconductor
01	X	X	X	X	X	X							
02	X	X	X	X	X	X							
03	X	X	X	X	X	X							
04	X	X	X	X	X	X							
05	X	X	X	X	X	X							
06	X	X	X	X	X								
07	X	X	X	X	X	X							
08	X	X	X	X	X	X							
09	X	X	X	X	X	X							

6.9 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	
Air Force - 11	(Project 5962-1945)
DLA - CC	

Review activities:
Army - HD, MI, SM
Navy - AS, CG, MC, SH, TD
Air Force - 03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks $1,2,3$, and 8 . In block 1 , both the document number and revision letter should be given.
2. The submitter of this form must complete blocks $4,5,6$, and 7 , and send to preparing activity.
3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

[^0]: 1/ Must withstand the added P_{D} due to short-circuit test (e.g., los).
 2/ Maximum junction temperature (T_{J}) may be increased during the burn-in screening and steady-state life test. However, such temperatures should not be used under normal operating conditions.

[^1]: 1/ Not more than one output should be shorted at a time.

[^2]: 3/ Ios limits for circuit C: -20/-100 mA; for circuits A, B, D, E, and F: -15/-100 mA

