

PART NUMBER AD624BD-G-ROCA

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Precision Instrumentation Amplifier

AD624

1.1 Scope.

This specification covers the detail requirements for a programmable gain instrumentation amplifier. The gain equation is $\frac{40,000}{R_G} + 1 \pm 20\%$ with external resistor gain programming.

1.2 Part Number.

The complete part number per Table 1 of this specification is as follows:

Device

Part Number

-1

AD624SD/883B

1.2.3 Case Outline.

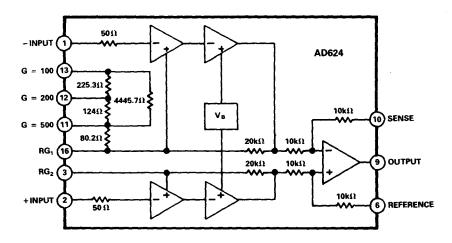
See Appendix 1 of General Specification ADI-M-1000: package outline: D-16.

1.3 Absolute Maximum Ratings. (T_A = +25°C unless otherwise noted)

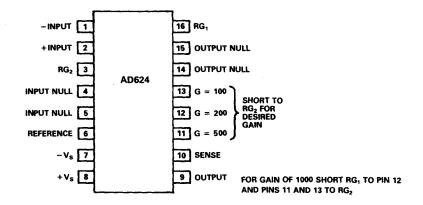
Supply Voltage	
Internal Power Dissipation	
Rated Operating Temperature Range	
Storage Temperature Range	
Lead Temperature Range (Soldering 10sec)	

1.5 Thermal Characteristics.

Thermal Resistance $\theta_{JC} = 22^{\circ}\text{C/W}$ $\theta_{JA} = 95^{\circ}\text{C/W}$


AD624 — SPECIFICATIONS

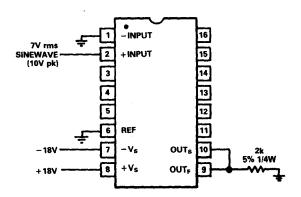
			Design Limit	Sub Group	Sub	Sub Group		
Test	Symbol	Device	@+25°C	1	2,3	4	Test Condition ¹	Units
Gain Error 1	GE ₁	-1	0.05	0.05			$G=1, V_O=\pm 10V$	±% max
Gain Error 100	GE ₁₀₀	-1	0.25	0.25			$G = 100, V_O = \pm 10V$	±% max
Gain Error 200	GE ₂₀₀	-1	0.5	0.5			$G = 200, V_O = \pm 10V$	±% max
Gain Error 500	GE ₅₀₀	-1	0.5	0.5			$G = 500, V_O = \pm 10V$	±% max
Gain Error Drift 1	TCGE ₁	-1	5				$G=1, V_O=\pm 10V$	± ppm/°C max
Gain Error Drift 100	TCGE ₁₀₀	-1	10				$G=100, V_O=\pm 10V$	± ppm/°C max
Gain Error Drift 200	TCGE ₂₀₀	-1	10				$G = 200, V_O = \pm 10V$	± ppm/°C max
Gain Error Drift 500	TCGE ₅₀₀	-1	15				$G = 500, V_O = \pm 10V$	± ppm/°C max
Input Offset Voltage	V _{OSI}	-1	75	75			$V_{IN} = 0V$	± μV max
Input Offset Voltage Drift	TCV _{OSI}	-1	2		2		$G = 500, V_{IN} = 0V$	±μV/°C max
Output Offset Voltage	Voso	-1	3	3			$V_{IN} = 0V$	± mV max
Output Offset Drift	TCV _{OSO}	-1	50		50		$G=1, V_{IN}=0V$	± μV/°C max
Input Bias Current	IB	-1	50	50			G=1	± nA max
Input Offset Current	Ios	-1	35	35			G=1	± nA max
Common-Mode Rejection	+CMRR ₁	-1	70	70			$G = 1, V_{IN} = 0V \text{ to } + 10V$	dB min
Common-Mode Rejection	-CMRR ₁	-1	70	70			$G = 1$, $V_{IN} = 0V$ to $-10V$	dB min
Common-Mode Rejection	+ CMRR ₁₀₀	-1	100	100			$G = 100, V_{IN} = 0V \text{ to } + 10V$	dB min
Common-Mode Rejection	-CMRR ₁₀₀	-1	100	100			$G = 100, V_{IN} = 0V \text{ to } -10V$	dB min
Common-Mode Rejection	+CMRR ₂₀₀	-1	100	100			$G = 200, V_{IN} = 0V \text{ to } + 10V$	dB min
Common-Mode Rejection	-CMRR ₂₀₀	- 1	100	100			$G = 200, V_{IN} = 0V \text{ to } -10V$	dB min
Common-Mode Rejection	+CMRR ₅₀₀	-1	110	110			$G = 500, V_{IN} = 0V \text{ to } + 10V$	dB min
Common-Mode Rejection	-CMRR ₅₀₀	-1	110	110			$G = 500, V_{IN} = 0V \text{ to } -10V$	dB min
Power Supply Current	I_{CC}	-1	5	5			G=1	mA max
Power Supply Rejection	PSRR ₁	-1	75	75			$G = 1, V_S = \pm 12V, \pm 15V$	dB min
Power Supply Rejection	PSRR ₁₀₀	-1	105	105			$G = 100, V_S = \pm 12V, \pm 15V$	dB min
Power Supply Rejection	PSRR ₂₀₀	-1	105	105			$G = 200, V_S = \pm 12V, \pm 15V$	dB min
Power Supply Rejection	PSRR ₅₀₀	-1	110	110			$G = 500, V_S = \pm 12V, \pm 15V$	dB min


Table 1.

NOTE $^{1}V_{S} = \pm 15V, \ R_{L} = 2k\Omega$ unless otherwise specified.

3.2.1 Functional Block Diagram and Terminal Assignments.

Pin Assignments



3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (49).

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

