

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\mathrm{I}_{0}-\mathrm{I}_{3 \mathrm{a}}$	Side A Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{~b}}-\mathrm{I}_{3 \mathrm{~b}}$	Side B Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Common Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{E}_{a}	Side A Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{E}_{\text {b }}$	Side B Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Z_{a}	Side A Output	50/33.3	- $1 \mathrm{~mA} / 20 \mathrm{~mA}$
Z_{b}	Side B Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4-input multiplexer circuits have individual active LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables (\bar{E}_{a}, \bar{E}_{b}) are HIGH , the corresponding outputs (Z_{a}, Z_{b}) are forced LOW. The ' F 153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are as follows:

$$
\begin{gathered}
\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \bullet\left(\mathrm{I}_{0 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right) \\
\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \bullet\left(\mathrm{I}_{0 b} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{gathered}
$$

The ' F 153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'F153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Truth Table

Select Inputs		Inputs (a or b)					
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	E	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	I $_{\mathbf{3}}$	Output
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

H $=$ HIGH Voltage Level
L = LOW
X = Immaterial

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Plastic
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
Input Voltage (Note 2)
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$ is useful life values beyond which the device may these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| \quad Commercial | |
| Supply Voltage | +4.5 V to +5.5 V |
| \quad Military | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min		Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current 54 F Breakdown Test 74 F				$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
${ }^{\text {I CEX }}$	Output High 54 F Leakage Current 74 F				$\begin{gathered} 250 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			12	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.1 \\ 7.0 \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 10.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{n} to Z_{n}	$\begin{aligned} & \hline 4.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.1 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \\ \hline \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay I_{n} to Z_{n}		5.3 5.1	7.0 6.5		9.0 8.0			ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flatpak (F)
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

