

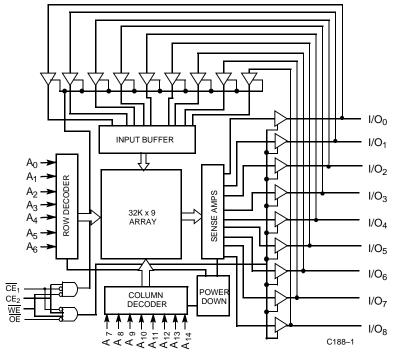
32K x 9 Static RAM

Features

- High speed
 - 15 ns
- Automatic power-down when deselected
- · Low active power
 - 660 mW
- · Low standby power
 - 55 mW
- · CMOS for optimum speed/power
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and OE features
- Available in non Pb-free 32-Lead (300-Mil) Molded SOJ

Functional Description

The CY7C188 is a high-performance CMOS static RAM organized as 32,768 words by 9 bits. Easy memory <u>exp</u>ansion is provided by an active-LOW chip enable ($\overline{\text{CE}}_1$), an <u>active-HIGH</u> chip enable ($\overline{\text{CE}}_2$), an active-LOW output enable ($\overline{\text{OE}}$), and tri-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.


Writing to the device is accomplished by taking \overline{CE}_1 and write enable (\overline{WE}) inputs LOW and CE_2 input HIGH. Data on the nine I/O pins (I/O₀ – I/O₈) is then written into the location specified on the address pins (A₀ – A₁₄).

Reading from the device is accomplished by taking \overline{CE}_1 and \overline{OE} LOW while forcing \overline{WE} and \overline{CE}_2 HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The nine input/output pins (I/O $_0$ – I/O $_8$) are placed in a high-impedance state when the device is deselected (CE $_1$ HIGH or CE $_2$ LOW), the outputs are disabled (OE HIGH), or during a write operation (CE $_1$ LOW, CE $_2$ HIGH, and WE LOW).

The CY7C188 is available in standard 300-mil-wide SOJ.

Logic Block Diagram

Pin Configuration

C188-2

Selection Guide

	-15	-20
Maximum Access Time (ns)	15	20
Maximum Operating Current (mA)	120	170
Maximum CMOS Standby Current (mA)	10	15

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage on V_{CC} Relative to GND (Pin 32 to Pin 16)-0.5V to + 7.0V DC Voltage Applied to Outputs in High Z State^[1].....-0.5V to V_{CC} + 0.5V

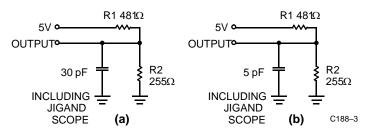
DC Input Voltage ^[1]	-0.5V to V _{CC} +0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

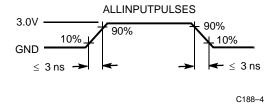
Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[2]

			-	-15	-20			
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V	
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA		0.4		0.4	V	
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage[1]		-0.5	0.8	-0.5	0.8	V	
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	- 5	+5	- 5	+5	μΑ	
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{I} \leq \text{V}_{CC}, \\ &\text{Output Disabled} \end{aligned}$	- 5	+5	- 5	+5	μА	
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$		120		170	mA	
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE}_1 \geq V_{IH} \\ &\text{or } CE_2 \leq V_{IL}, V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$		35		35	mA	
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\begin{array}{l} \text{Max. V}_{CC}, \overline{CE}_1 \! \geq \! V_{CC} \! - \! 0.3 \text{V or} \\ \text{CE}_2 \! \leq \! 0.3 \text{V, V}_{\text{IN}} \! \geq \! V_{\text{CC}} \! - \! 0.3 \text{V} \\ \text{or V}_{\text{IN}} \! \leq \! 0.3 \text{V, f} \! = \! 0 \end{array}$		10		15	mA	


Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{IN} : Controls	Input Capacitance	$V_{CC} = 5.0V$	8	pF
C _{OUT}	Output Capacitance		8	pF

- 1. Minimum voltage is equal to -2.0 V for pulse durations less than 20 ns.
- See the last page of this specification for Group A subgroup testing information.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[4, 5]

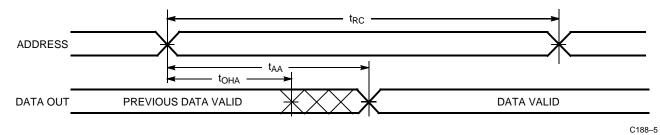
Equivalent to: THÉVENIN EQUIVALENT

> 167Ω OUTPUT -**-o** 1.73V

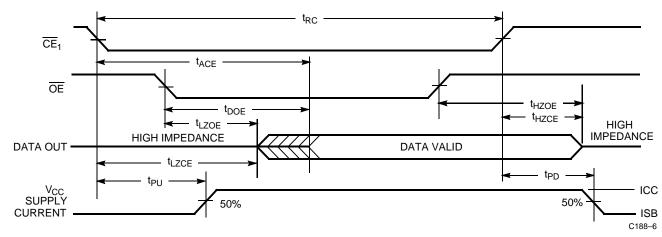
Switching Characteristics Over the Operating Range^[2, 4]

		_	15	_	20	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE						
t _{RC}	Read Cycle Time	15		20		ns
t _{AA}	Address to Data Valid		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		15		20	ns
t _{DOE}	OE LOW to Data Valid		7		9	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5,6]		7		9	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[6]	3		3		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[5, 6]		7		9	ns
t _{PU}	CE ₁ LOW or CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		15		20	ns
WRITE CYCLE ^{[7}	7, 8]					
t _{WC}	Write Cycle Time	15		20		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	10		15		ns
t _{AW}	Address Set-Up to Write End	10		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}				15		ns
t _{SD}	Data Set-Up to Write End	8		10		ns
t _{HD}	Data Hold from Write End	0 0				ns
t _{HZWE}	WE LOW to High Z ^[5]	igh Z ^[5] 0 7 0				ns
t _{LZWE}	WE HIGH to Low Z ^[5, 6]	3		3		ns

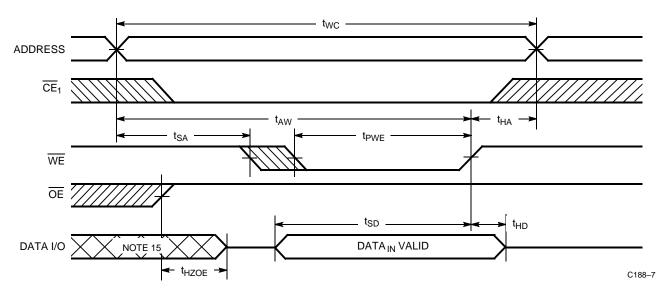
Notes:


- 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

- t_{ILZOE}, t_{IHZOE}, and t_{IHZOE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 t_{IHZOE}, t_{IHZOE}, and t_{IHZOE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{IHZOE} is less than t_{ILZOE}, t_{IHZOE} is less than t_{ILZOE}, and t_{IHZNE} is less than t_{ILZNE} for any given device.
 The internal write time of the memory is defined by the overlap of CE₁, LOW, CE₂ HIGH, and WE LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{IHZWE} and t_{SD}.

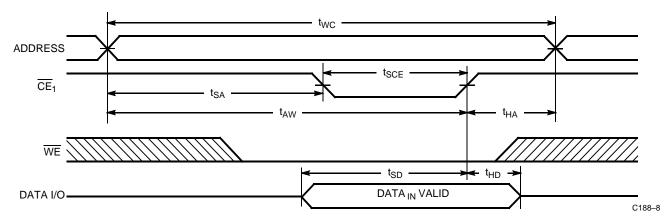


Switching Waveforms

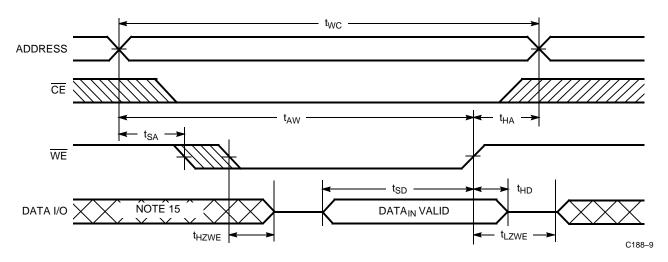

Read Cycle No. $\mathbf{1}^{[9,10]}$

Read Cycle No. 2 (Chip-Enable Controlled)[10,11,12]

Write Cycle No. 1 (WE Controlled)^[7,12,13,14]


Notes:

- 9. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 10. WE is HIGH for read cycle.
- 10. WE is HIGH for fead cycle.
 11. Address valid prior to or coincident with \(\overline{\text{CE}}\) transition LOW.
 12. Timing parameters are the same for all chip enable signals (\(\overline{\text{CE}}_1\) and CE₂), so only the timing for \(\overline{\text{CE}}_1\) is shown.
 13. Data I/O is high impedance if \(\overline{\text{OE}} = \frac{\text{VIH}}{\text{IH}}\).
 14. If \(\overline{\text{CE}}\) goes HIGH simultaneously with \(\overline{\text{WE}}\) HIGH, the output remains in a high-impedance state.
 15. During this period, the I/Os are in the output state and input signals should not be applied.



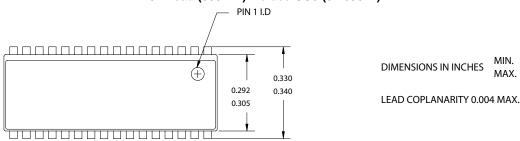
Switching Waveforms (Continued)

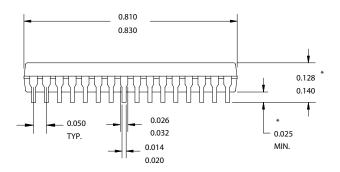
Write Cycle No.2 ($\overline{\text{CE}}$ Controlled) $^{[7,12,13,14]}$

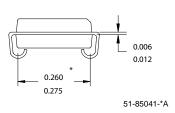
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[8,12,14]

Truth Table

CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C188-15VC	51-85041	32-Lead (300-Mil) Molded SOJ	Commercial
20	CY7C188-20VC	51-85041	32-Lead (300-Mil) Molded SOJ	Commercial



Package Diagrams

32-Lead (300-Mil) Molded SOJ (51-85041)

All products and company names mentioned in this document may be the trademarks of their respective holders

Document History Page

Document Title: CY7C188 32K x 9 Static RAM Document Number: 38-05053					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	107155	09/10/01	SZV	Change from Spec number: 38-00220 to 38-05053	
*A	506367	See ECN	NXR	Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated Ordering Information table	