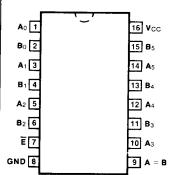
93847 0/0543

HIGH SPEED 6-BIT IDENTITY COMPARATOR

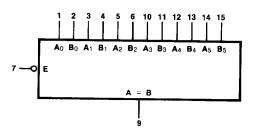

DESCRIPTION — The '47 is a very high speed 6-bit identity comparator. The device features an open-collector output for wired-OR expansion and active LOW Enable. The '47 is fabricated with the Schottky barrier diode process for high speed, and is completely compatible with all TTL families. This device is recommended for applications where wired-OR expansion is desired and the speed of an active pull-up is not required. The '47 is a pin-for-pin replacement for the DM7160/8160.

- SCHOTTKY PROCESS FOR HIGH SPEED
- COMPARE TWO 6-BIT WORDS IN 15 ns
- OPEN-COLLECTOR OUTPUT FOR WIRED-OR EXPANSION

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE	
PKGS	ОUТ	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$		
Plastic DIP (P)	А	93S47PC		9B	
Ceramic DIP (D)	А	93S47DC	93S47DM	6B	
Flatpak (F)	Α	93S47FC	93S47FM	4L	

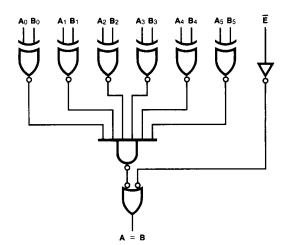
CONNECTION DIAGRAM PINOUT A



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93S (U.L.) HIGH/LOW
A ₀ — A ₅ B ₀ — B ₅ E A = B	Word A Inputs Word B Inputs Enable Input (Active LOW) A Equal to B Output	1.25/1.25 1.25/1.25 1.25/1.25 OC'/12.5

*OC - Open Collector


LOGIC SYMBOL

Vcc = Pin 16 GND = Pin 8 **FUNCTIONAL DESCRIPTION** — The '47 is a very high speed 6-bit identity comparator. When enabled (\overline{E} input LOW), the A = B output is HigHif the two 6-bit words are equal. When disabled (\overline{E} input HIgH), the A = B output is forced HIGH. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. Since the A = B output state is determined by the equality of each pair of inputs, the equivalent A_n and B_n pins can be interchanged to facilitate board layout or wiring. The active LOW Enable (\overline{E}) can be used as a high speed strobe. When the Enable is HIGH, the A = B output is forced HIGH. This allows devices tied to a common wired-OR (actually wired-AND) node to be strobed individually or in groups. Only the enabled devices will determine the state of the output node.

$$(\mathsf{A} = \mathsf{B}) = \overline{\mathsf{E}} + (\overline{\mathsf{A}_0 \oplus \mathsf{B}_0}) \bullet (\overline{\mathsf{A}_1 \oplus \mathsf{B}_1}) \bullet (\overline{\mathsf{A}_2 \oplus \mathsf{B}_2}) \bullet (\overline{\mathsf{A}_3 \oplus \mathsf{B}_3}) \bullet (\overline{\mathsf{A}_4 \oplus \mathsf{B}_4}) \bullet (\overline{\mathsf{A}_5 \oplus \mathsf{B}_5})$$

LOGIC DIAGRAM

TRUTH TABLE

INPUTS		OUTPUT		
E	An, Bn	A = B		
L	$A_n = B_n$	Ħ		
L	$A_n \neq B_n$	L		
н	$A_n \neq B_n$	н		
Н	$A_n = B_n$	н		

H = HIGH Voltage Level L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	938		UNITS	CONDITIONS
01202		Min	Max		
lcc	Power Supply Current		65	mA	V _{CC} = Max

AC CHARACTERISTICS: V_{CC} = +5.0 V, T_A = +25° C (See Section 3 for waveforms and load configurations)

		9	93S C _L = 15 pF R _L = 280 Ω		CONDITIONS
SYMBOL	PARAMETER	. –			
		Min	Max		
tpLH tpHL	Propagation Delay An or Bn to A = B	5.0 5.0	17 17	ns	E = Gnd, Other Inputs = 4.5 V, Test each input individually, Figs. 3-2, 3-5
tpLH tpHL	Propagation Delay An or Bn to A = B	4.0 4.0	14 15	ns	E = Gnd, Other Inputs = Gnd, Test each input individually, Figs. 3-2, 3-4
tpLH tpHL	Propagation Delay E to A = B	3.0 3.0	10 10	ns	A _n ≠ B _n Figs. 3-2, 3-5