

PART NUMBER

54HC158BEA-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54HC158

Quad 2-Input Multiplexers

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

							F	REVISI	ONS										
LTR	DESCRIPTION							DA	TE (YI	R-MO-I	DA)		APPF	ROVED					
A	Add vendor CAGE 27014 to case outline 2. Change vendor simila number. Editorial changes to table I JT						similar	part			87-0)4-01		Nels	on A. H	lauck			
В	Add case outline "F" to device type 01. Add vendor CAGE 18324 to case outlines E, F, and 2. Editorial changes throughout. Change current CAGE code JEN						1	88-12-08			Michael A. Frye								
С	Update the		ate to	the cur	rent rec	quireme	ents of	MIL-PF	RF-3853	35 ja	ak		07-1	0-17		Thor	nas M.	Hess	
D	Update boil	erplate	paragr	aphs to	the cu	Irrent N	IIL-PRF	-3853	5 requii	rement	s		13-0	6-21		Thor	nas M.	Hess	
REV																			
SHEET																			
REV																			
SHEET																			
REV STATUS			RE∖	/		D	D	D	D	D	D	D	D	D	D	D			
OF SHEETS			SHE	ET		1	2	3	4	5	6	7	8	9	10	11			
PMIC N/A			PRE	PARE		_					1	י א וס) MAF		F		
0.7.4					Jeffery	Tunsta									O 432				
	NDARD DCIRCUIT		CHE	CKED	BY D. A. D	liConzo					http:	<u>//ww</u>	w.lan	dand	mariti	me.d	la.mi	<u> </u>	
	AWING		م ۸	ROVE		ncenzo	,												
210			APP	NUVEL		Hauck									HIGH	-SPE	ED (CMOS	З,
FOR U DEPA	THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS		DRA	WING	APPRO		ATE			QUAD 2-INPUT MULTIPLEXER, MONOLITHIC SILICON									
	NCIES OF THI		REV	ISION	LEVEL				SI	ZE	CA	GE CO	DE						
	SC N/A				[)			4	4		67268	8			5962-	8682	3	
											SH	EET		1 0	F 11				

1. SCOPE 1.1 Scope. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A. 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example: 5962-86823 01 Drawing number Case outline Lead finish Device type (see 1.2.1) (see 1.2.2) (see 1.2.3) 1.2.1 Device type(s). The device type(s) identify the circuit function as follows: Device type Generic number Circuit function 54HC158 01 Multiplexer, quad 2-input (inverted output) 1.2.2 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: **Outline** letter Descriptive designator Terminals Package style GDIP1-T16 or CDIP2-T16 16 Dual-in-line Е F GDFP1-F16 or CDFP2-F16 Flat pack 16 2 CQCC1-N20 20 Square leadless chip carrier 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A. 1.3 Absolute maximum ratings. 1/ 2/ Supply voltage range (V_{CC})..... -0.5 V dc to +7.0 V dc DC input voltage range (V_{IN})..... -0.5 V dc to V_{CC} + 0.5 V dc Clamp diode current..... ±20 mA DC output current (per pin) ±25 mA DC V_{CC} or GND current (per pin) ±50 mA Maximum power dissipation (P_D) 500 mW 3/ Lead temperature (soldering, 10 seconds) +260°C Thermal resistance, junction-to-case (θ_{JC}) See MIL-STD-1835 Junction temperature (T_J) +175°C 1.4 Recommended operating conditions. Supply voltage range (V_{CC})...... +2.0 V dc to +6.0 V dc Output voltage range (V_{OUT})...... 0.0 V to V_{CC} Case operating temperature range (T_C)..... -55°C to +125°C Input rise and fall time (tr, tr): V_{CC} = 4.5 V dc...... 0 to 500 ns V_{CC} = 6.0 V dc...... 0 to 400 ns 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. 2/ Unless otherwise specified, all voltages are referenced to ground. 3/ For $T_c = +100^{\circ}C$ to $+125^{\circ}C$, derate linearly at 12 mW/°C. SIZE **STANDARD** 5962-86823 Α MICROCIRCUIT DRAWING DLA LAND AND MARITIME **REVISION LEVEL** SHEET COLUMBUS, OHIO 43218-3990 2 D

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://quicksearch.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094).

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents cited in the solicitation or contract.

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JESD7 - Standard for Description of 54/74HCXXXXX and 54/74HCTXXXXX Advanced High-Speed CMOS Devices.

(Copies of these documents are available online at <u>http://www.jedec.org</u> or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240-S Arlington, VA 22201-2107).

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outline</u>. The case outline shall be in accordance with 1.2.2 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

- 3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.
- 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.

3.2.5 <u>Switching waveforms</u>. The switching waveforms shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime -VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	4

Test	Symbol	Test conditio	Group A	Limits		Unit		
	$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified 1			subgroups	Min	Max		
High level output	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -20 \ \mu A$	$V_{CC} = 2.0 V$	1, 2, 3	1.9		V	
voltage			$V_{CC} = 4.5 V$	-	4.4			
			$V_{CC} = 6.0 V$	-	5.9			
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4.0 \text{ mA}$	$V_{CC} = 4.5 V$		3.7			
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -5.2 \text{ mA}$	V _{CC} = 6.0 V	-	5.2			
Low level output V _{OL} voltage	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{CC} = 2.0 V$	1, 2, 3		0.1	V	
		I _{OL} = +20 μA	$V_{CC} = 4.5 V$	-		0.1		
			$V_{CC} = 6.0 V$	-		0.1		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = +4.0 \text{ mA}$	V _{CC} = 4.5 V			0.4		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = +5.2 \text{ mA}$	V _{CC} = 6.0 V			0.4		
	VIH		$V_{CC} = 2.0 V$	1, 2, 3	1.5		V	
	<u>2</u> /		$V_{CC} = 4.5 V$		3.15			
			$V_{CC} = 6.0 V$		4.2			
Low level input	VIL		$V_{CC} = 2.0 V$	1, 2, 3		0.3	V	
voltage	<u>2</u> /	<u>2</u> /		$V_{CC} = 4.5 V$	1		0.9	
			$V_{CC} = 6.0 V$			1.2]	
Input capacitance	C _{IN}	$V_{IN} = 0.0 V, T_C = +25^{\circ}C$ See 4.3.1c		4		10	pF	
Quiescent supply current	Icc			1, 2, 3		160	μA	
Input leakage current	l _{iN}	$V_{CC} = 6.0 V$ $V_{IN} = V_{CC} \text{ or GND}$		1, 2, 3		±1.0	μA	
Functional tests		See 4.3.1d		7, 8				
Propagation delay	t _{PHL1} ,	T _C = +25°C	$V_{CC} = 2.0 V$	9		140	ns	
time, data to output Y	t _{PLH1} <u>3</u> /	C _L = 50 pF See figure 4	$V_{CC} = 4.5 V$			28		
calpar i			$V_{CC} = 6.0 V$			24		
		$T_{\rm C}$ = -55°C and +125°C	$V_{CC} = 2.0 V$	10, 11		210	-	
		C _L = 50 pF See figure 4	$V_{CC} = 4.5 V$			42		
				$V_{CC} = 6.0 V$			36	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	5

		TABLE I. Electrical performance	ce characteristics - C	ontinued.			
Test	Symbol	Test condition	Group A	Limits		Unit	
		$-55^{\circ}C \leq T_C \leq +1$ unless otherwise sp	subgroups	Min	Max		
Propagation delay	t _{PHL2} ,	$T_{\rm C}$ = +25°C	$V_{CC} = 2.0 V$	9		160	ns
time, select to output Y	time, select to t_{PLH2} output Y 3/	C _L = 50 pF See figure 4	$V_{CC} = 4.5 V$			32	
	<u>o</u> /		$V_{CC} = 6.0 V$			27	
		$T_{C} = -55^{\circ}C$ and $+125^{\circ}C$ $C_{L} = 50 \text{ pF}$ See figure 4	$V_{CC} = 2.0 V$	10, 11		240	
			$V_{CC} = 4.5 V$	-		48	
			$V_{CC} = 6.0 V$	-		41	
Propagation delay	t _{PHL3} , t _{PLH3} <u>3</u> /		V _{CC} = 2.0 V	9		160	ns
time, output enable to output Y			$V_{CC} = 4.5 V$			32	
			$V_{CC} = 6.0 V$	-		27	
		$T_{C} = -55^{\circ}C$ and $+125^{\circ}C$	$V_{CC} = 2.0 V$	10, 11		240	
		C∟ = 50 pF See figure 4	$V_{CC} = 4.5 V$			48]
			$V_{CC} = 6.0 V$	-		41	
Transition time	t _{THL} ,	T _C = +25°C	$V_{CC} = 2.0 V$	9		75	ns
	t⊤∟н <u>3</u> /	C _L = 50 pF See figure 4	$V_{CC} = 4.5 V$	-		15	
	<u>- 5</u> /		$V_{CC} = 6.0 V$			13	1
		$T_{\rm C}$ = -55°C and +125°C	$V_{CC} = 2.0 V$	10, 11		110]
		$C_L = 50 \text{ pF}$	$V_{CC} = 4.5 V$			22	1
		See figure 4	$V_{CC} = 6.0 V$	1		19	1

<u>1</u>/ For a power supply of 5 V ±10 percent the worst case output voltage (V_{OH} and $V_{O!}$) occur for H_c at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively (The V_{IH} value at 5.5 V is 3.85 V). The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used. Power dissipation capacitance (CPD), typically 40 pF, determines the no load dynamic power consumption, P_D = CPD V_{CC2} f + I_{CC} V_{CC}, and the no load dynamic current consumption, IS = CPD V_{CC2} f + I_{CC}.

 $\underline{2}/$ Test not required if applied as a forcing function for V_{OH} or $V_{OL}.$

3/ AC testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested, to the specified parameters.

<u>4</u>/ Transition time (t_{TLH} , t_{THL}), if not tested, shall be guaranteed to the specified parameters.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 6

Device type	0	1
Case outline	E and F	2
Terminal number	Terminal symbol	Terminal symbol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Select A0 B0 Y0 A1 B1 Y1 GND Y2 B2 A2 Y3 B3 A3 Output enable Vcc 	NC Select A0 B0 Y0 NC A1 B1 Y1 GND NC Y2 B2 A2 Y3 NC B3 A3 Output enable
20		V _{cc}

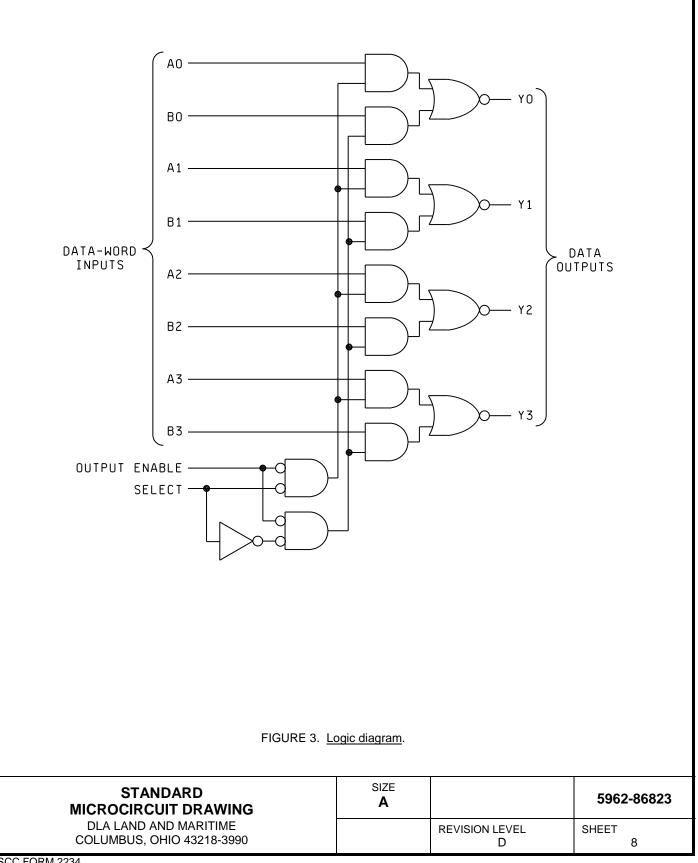

NC = No internal connection

FIGURE 1. Terminal connections.

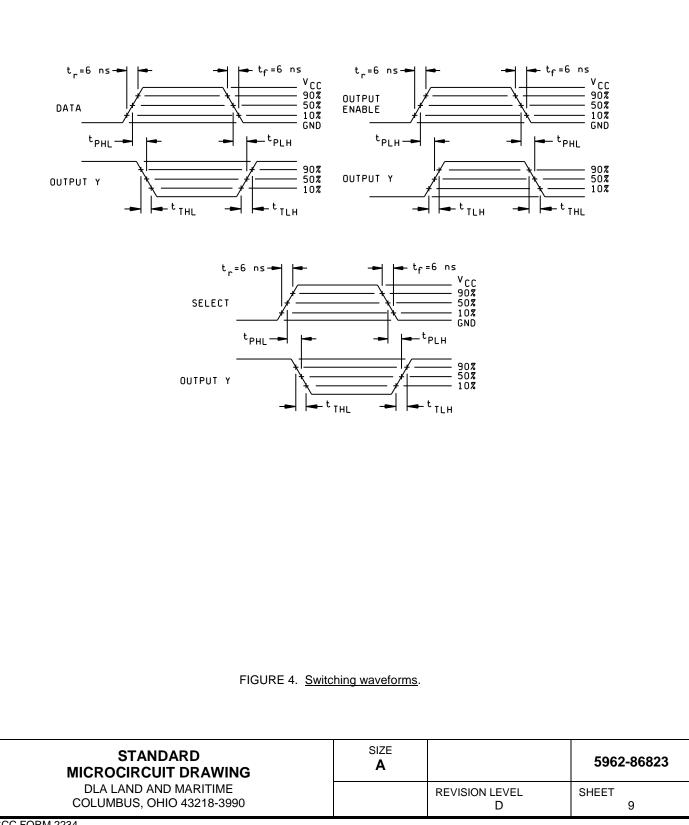

Output enable	Select	Data inputs		Output
		А	В	Y
Н	Х	Х	Х	Н
L	L	L	Х	Н
L	L	Н	Х	L
L	Н	Х	L	Н
L	Н	Х	Н	L

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	7

DSCC FORM 2234 APR 97

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups
	(in accordance with
	MIL-STD-883, method 5005,
	table I)
Interim electrical parameters	
(method 5004)	
Final electrical test parameters	1*, 2, 3, 9
(method 5004)	
Group A test requirements	1, 2, 3, 7, 9, 10, 11
(method 5005)	
Groups C and D end-point	1, 2, 3
electrical parameters	
(method 5005)	

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Test all applicable pins on 5 devices with no failure,
- d. Subgroup 7 shall include verification of the truth table as specified on figure 2 herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	10

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86823
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	11

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 13-06-21

Approved sources of supply for SMD 5962-86823 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN 1/	Vendor CAGE number	Vendor similar PIN 2/
	3V146	
5962-8682301EA	3V146	54HC158/BEA
5962-8682301FA	3V146	54HC158/BFA

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

3V146

Rochester Electronics 16 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.