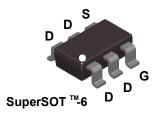
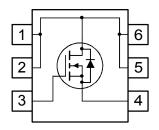


Si3456DV

N-Channel PowerTrench® MOSFET


General Description


These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- 5.1 A, 30 V. $R_{DS(ON)} = 45 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 65 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$
- · Low gate charge
- · High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	5.1	А
	Pulsed		20	
P _D	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temp	perature Range	-55 to +150	°C

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	30	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.456	Si3456DV	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					I
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	30			V
$\Delta BV_{DSS} \over \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 30 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			1	μΑ
		T _J =70°C			5	
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.5	2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-4		mV/°
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 5.1 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \qquad I_D = 4.3 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 5.1 \text{ A}, T_J = 125^{\circ}\text{C}$		33 44 49	45 65 71	mΩ
I _{D(on)}	On–State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	15			Α
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 5.1 \text{ A}$		12		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		463		pF
Coss	Output Capacitance	f = 1.0 MHz		109		pF
C _{rss}	Reverse Transfer Capacitance	1		44		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.1		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 1 \text{ A},$		6.3	13	nS
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		6	12	nS
$t_{\text{d(off)}}$	Turn-Off Delay Time			20	36	nS
t _f	Turn–Off Fall Time			2.3	4.6	nS
Qg	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 5.1 \text{ A},$		9	12.6	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 10 V		1.4		nC
Q _{gd}	Gate-Drain Charge	1		1.6		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings	•	•		
I _S	Maximum Continuous Drain-Source				1.3	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A} \text{(Note 2)}$		0.77	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 5.1A		18		nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$ (Note 2)		17		nC

Notes

- 1. $R_{0,JA}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{0,JC}$ is guaranteed by design while $R_{0,CA}$ is determined by the user's board design.
 - a. 78°C/W when mounted on a 1in^2 pad of 2oz copper on FR-4 board.
 - b. 156°C/W when mounted on a minimum pad.
- 2. Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$

Typical Characteristics

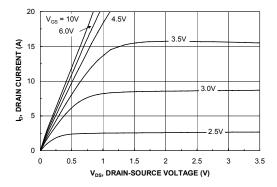


Figure 1. On-Region Characteristics.

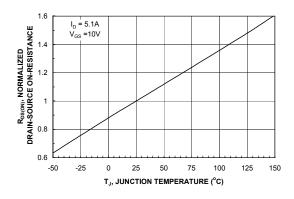


Figure 3. On-Resistance Variation withTemperature.

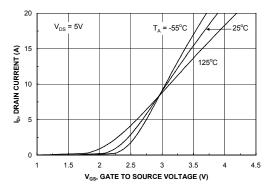


Figure 5. Transfer Characteristics.

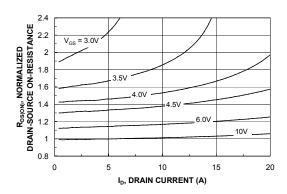


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

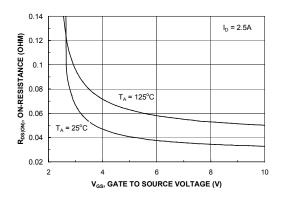


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

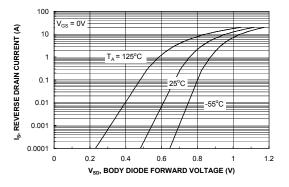
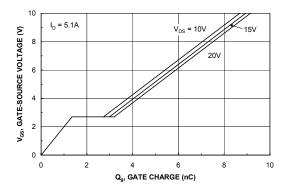



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

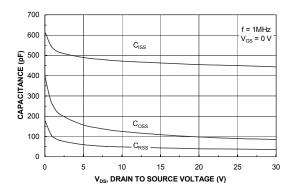
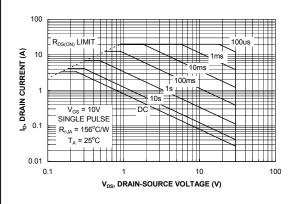



Figure 7. Gate Charge Characteristics.

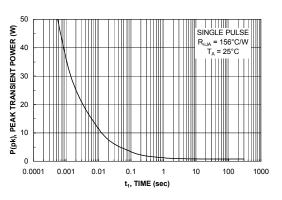


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

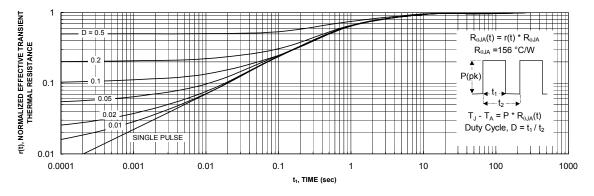


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ $ACEx^{TM}$ FASTr™ VCX^{TM} OPTOLOGIC® $\mathsf{FRFET}^\mathsf{TM}$ SPM™ Bottomless™ OPTOPLANAR™ CoolFET™ GlobalOptoisolator™ PACMANTM Stealth™ POP^{TM} CROSSVOLT™ GTO™ SuperSOT™-3 Power247™ DOME™ HiSeC™ SuperSOT™-6 I^2C^{TM} SuperSOT™-8 EcoSPARK™ PowerTrench ® SyncFET™ E²CMOSTM ISOPLANAR™ QFET™ OS^{TM} EnSigna™ LittleFET™ TinyLogic™ FACT™ TruTranslation™ MicroFET™ QT Optoelectronics™ UHC™ FACT Quiet Series™ MicroPak™ Quiet Series™

FACT Quiet Series MicroPakt Quiet Series MicroPakt Guiet MicroPakt Guiet Guiet

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Search:

Go

Home >> Find products >>

SI3456DV

N-Channel PowerTrench MOSFET

Contents

- General description
- Qualification Support

- Features
- Product status/pricing/packaging
- Order Samples

General description

These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

back to top

Features

- 5.1A. 30V
 - $R_{DS(ON)} = 45m\Omega @ V_{GS} 10V$
 - $R_{DS(ON)} = 65 m\Omega @ V_{GS} 4.5 V$
- High performance trench technology for extremely low R_{DS(ON)}
- Low gate charge
- High power and current handling capability

back to top

Product status/pricing/packaging

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

This product Use in FETBench Analysis

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product	Product status	Pb-free	Package	Leads	Packing	Package Marking Convention**
		Status	type		method	

SI3456DV_NF073 Not recommended for new designs SSOT-6 6 TAPE REEL Line 1: &E&Y (Binary Calendar Year Coding)
Line 2: .456

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product SI3456DV is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product		
SI3456DV_NF073		

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |