FM24C256－256K－Bit Standard 2－Wire Bus Interface Serial EEPROM

General Description

FM24C256 is a 256 Kbit CMOS non－volatile serial EEPROM organized as $32 \mathrm{~K} \times 8$ bit memory．This device confirms to Extended IIC2－wire protocol that allows accessing of memory in excess of 16Kbitonan IICbus．Thisserial communication protocol uses a Clock signal（SCL）and a Data signal（SDA）to synchro－ nously clock databetween a master（e．g．a microcontroller）anda slave（EEPROM）．FM24C256 is designed to minimize pin count and simplify PC board layout requirements．

FM24C256 offers hardware write protection where by the entire memory array can be write protected by connecting WP pinto V The entire memory then becomes unalterable until the WP pin is switchedto V ss．
＂LZ＂and＂L＂versions ofFM24C256 offervery lowstandby current making them suitable for low power applications．This device is offered in SO and DIP packages．

Fairchild EEPROMs are designed and tested for applications requiringhighendurance，high reliability andlow powerconsump－ tion．

Features

■ Extended operating voltage： 2.7 V to 5.5 V
■ Up to 400 KHz clock frequency at 2.7 V to 5.5 V
－Lowpowerconsumption
－ 0.5 mA active currenttypical
—10 A Astandby currenttypical
-1μ Astandby currenttypical（Lversion）
$-0.1 \mu \mathrm{~A}$ standby currenttypical（LZ version）
■ Schmitttriggerinputs
－ 64 byte page write mode
－Selftimed write cycle（6ms max）
－HardwareWrite Protection for the entire array
■ Endurance：up to 100 K data changes
■ Data Retention：Greater than 40 years
■ Packages：8－Pin DIP and 8－Pin SO
■ Temperature range
－Commercial： $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
－Industrial（E）：$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
－Automotive（V）：$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Block Diagram

Connection Diagram

Dual-in-Line Package (N) and SO Package (M8)

See Package Number N08E and M08A

Pin Names

$\mathrm{V}_{\text {SS }}$	Ground
SDA	Serial Data I/O
SCL	Serial Clock Input
WP	WriteProtect
V_{CC}	PowerSupply
A0, A1, A2	Device Address Inputs

Ordering Information

Product Specifications

Absolute Maximum Ratings

Ambient Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Inputor Output Voltages with Respect to Ground	6.5 V to -0.3 V
Lead Temperature (Soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$
ESD Rating	2000 V min.

Operating Conditions

Ambient Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Positive PowerSupply $\begin{array}{ll}\text { FM24C256 } & 4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \text { FM24C256L } & 2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \text { FM24C256LZ } & 2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}\end{array}$

AC Test Conditions

InputPulse Levels	$\mathrm{V}_{\mathrm{CC}} \times 0.1$ to $\mathrm{V}_{\mathrm{CC}} \times 0.9$
Input Rise and Fall Times	10 ns
Input \& Output Timing Levels	$\mathrm{V}_{\mathrm{CC}} \times 0.3$ to $\mathrm{V}_{\mathrm{CC}} \times 0.7$
OutputLoad	1 TTL Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

AC Testing Input/Output Waveforms

Bus Timing

Write Cycle Timing

Note: The write cycle time ($\mathrm{t} \mathrm{w}_{\mathrm{R}}$) is the time from a valid stop condition of a write sequence to the end of the internal erase/program cycle.

Typical System Configuration

Note: Due to open drain configuration of SDA and SCL, abus-level pull-up resistor is called for, (typical value $=4.7 \mathrm{k}$
ת)

Background Information (IIC Bus)

Extended IIC specification is an extension of Standard IIC specification to allow addressing of EEPROMs with morethan 16Kbits of memory on an IIC bus. The difference between the two specifications is that Extended IIC specification defines two bytes of "Array Address" information while Standard IIC specification defines only one. All other aspects are identical between the two specifications. Using two bytes of Array Address and 3address signals (A2, A1 and A0), it is now possible to address up to 4 Mbits $\left(2^{8 *} 2^{8 *} 2^{3 *} 8=4\right.$ Mbits) of memory on an IIC bus.

Note that due to format difference, it is not possible to have peripherals which follow Standard IIC specification (e.g. 16K bit EEPROM) and peripherals which follow Extended IIC specification (e.g. 256K bit EEPROM) on a common IIC bus.

IIC bus allows synchronous bi-directional communication between a TRANSMITTER and a RECEIVER using a Clock signal (SCL) and a Data signal (SDA). Additionally there are up to three Address signals(A2, A1 and A0) which collectively serve as"chip select signal" to a device (e.g. EEPROM) on the bus.

All communication on the IIC bus must be started with a valid START condition (by a MASTER), followed by transmittal (by the MASTER) of byte(s) of information (Address/Data). Forevery byte of information received, the addressed RECEIVER provides a valid ACKNOWLEDGEpulse to further continue the communication unless theRECEIVER intends to discontinue the communication. Depending on the direction of transfer (Write or Read), the RECEIVER can be a SLAVE or the MASTER. A typical IIC communication concludes with a STOP condition (by the MASTER).

Addressing an EEPROM memory location involves sending a command string withthe following information:
[DEVICE TYPE]-[DEVICE/PAGE BLOCK SELECTION]-[R/W BIT]—[ARRAY ADDRESS\#1]—[ARRAY ADDRESS\#0]

Slave Address

Slave Address is an8-bit information consisting of a Device type field (4bits), Device/Page block selection field (3bits) and Read/ Write bit (1bit).

Slave Address Format

Device Type

IIC bus is designed to supporta variety of devices such as RAMs, EPROMs etc., along with EEPROMS. Hence to properly identify various devices on the IIC bus, a 4-bit "Device Type" identifier string is used. ForEEPROMS, this 4-bit string is 1-0-1-0. Every IIC device on the bus internally compares this 4-bit string to its own "Device Type" string to ensure properdevice selection.

Device/Page Block Selection

When multiple devices of the sametype(e.g. multipleEEPROMS) are present on the IIC bus, then the A2, A1 and A0 address information bits are used in device selection. Every IIC device on the bus internally compares this 3-bit string to its own physical configuration (A2, A1 and A0 pins) to ensure proper device selection. This comparison is in addition to the "Device Type" comparison.

In addition to selecting an EEPROM, these 3 bits are also used to select a "page block" within the selected EEPROM. Each page blockis $512 \mathrm{Kbit}(64 \mathrm{KBytes})$ in size. If an EEPROM contains more than one page bock then the selection of a page block within the EEPROM is by using A2, A 1 and $A 0$ bits.

Read/Write Bit

Last bit of the Slave Address indicates if the intended access is Read or Write. If the bit is " 1 ," then the access is Read, whereas if the bit is " 0 ," then the access is Write.

Acknowledge

Acknowledge is an active LOW pulseon the SDA line driven by an addressed receiver to the addressing transmitter to indicate receipt of 8 -bits of data. The receiver provides an ACK pulse for every 8-bits of data received. Thishandshake mechanismisdone as follows: After transmitting 8-bits of data, the transmitter releases the SDA line and waits for the ACK pulse. The addressed receiver, if present, drives the ACK pulse on the SDA line during the 9th clock and releases the SDA line back (to the transmitter). Refer Figure 3.

Array Address\#1

Thisis an8-bitinformation containing the mostsignificant8-bits of 16-bit memory array address of a location to be selected within a page block of the device.

Array Address\#0

This is an8-bitinformation containingthe leastsignificant8-bits of 16-bit memory array address of a location to be selected within a page block of the device.

Pin Descriptions

Serial Clock (SCL)

The SCLinput is used to clock all data into and out of the device.

Serial Data (SDA)

SDA is abi-directional pinused to transfer data into and out of the device. It is an open drain outputand may be wire-ORed with any number of open drain oropen collector outputs.

Write Protect (WP)

Iftied to V_{cc}, PROGRAM operations onto the entire memory will not be executed. READ operations are possible. If tied to V ss, normal operationisenabled, READ/WRITEovertheentirememory ispossible

This feature allows the user to assign the entire memory as ROM which can be protected against accidental programming. When write is disabled, slave address and word address will beacknowledged but data will not be acknowledged.

This pin has an internal pull-down circuit. However, on systems where write protection is not required it is recommended that this pinistied to V ss

Device Selection Inputs A2, A1 and A0 (as appropriate)

These inputs collectively serve as "chip select" signal to an EEPROM when multiple EEPROMs are present on the same IIC bus. Hence these inputs should be connected to $\mathrm{V} \quad \mathrm{cc} \mathrm{Or}_{\mathrm{SS}}$ in a unique mannertoallow properselection of anEEPROMamongst multipleEEPROMs. During atypical addressing sequence, every EEPROM on the IIC bus compares the configuration of these inputs to the respective 3 bit "Device/Page block selection" information (part of slave address) to determine a valid selection. Fore.g. ifthe 3bit "Device/Pageblock selection" is 1-0-1, then the EEPROM whose "Device Selection inputs" (A2, A1 and A0) are connected to $\mathrm{V}{ }_{c C}-\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{CC}}$ respectively, is selected.

Device Operation

The FM24C256 supports a bi-directional bus oriented protocol. The protocol defines any device that sends data onto the bus as atransmitterand the receiving device as the receiver. The device controlling the transfer is the master and the device that is controlled is the slave. The master will always initiate data transfers and provide the clock for both transmit and receive operations. Therefore, the FM24C256 will be considered a slave in all applications.

Clock and Data Conventions

Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions. Refer Figure 1.

Start Condition

All commands are preceded by the start condition, which is a HIGHtoLOWtransition of SDA whenSCL is HIGH. TheFM24C256 continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has beenmet. Refer Figure 2.

Stop Condition

All communications areterminated by astop condition, whichis a LOW to HIGH transition of SDA when SCL is HIGH. The stop condition is also used by the FM24C256 to place the device in the standbypowermode. Refer Figure2.

FM24C256 Array Addressing

During Read/Write operations, addressing the EEPROMmemory array involves in providing2addressbytes, "Word Address 1"and "Word Address 0." However on FM24C256 only the 7 least significant bits (LSB) of "Word Address 1" byte are used in decodingthe access location. The remaining 1 bitis notused and is recommended to be set to " 0 ." All 8 bits of the "Word Address 0 " byte are used in decoding the access location.

Data Validity (Figure 1)

Start and Stop Definition (Figure 2)

Acknowledge Response from Receiver (Figure 3)

Write Operations

BYTE WRITE

For byte write operation, two bytes of address are required after the slave address. These two bytes select 1 out of the 32K locations inthememory. The master provides these two address bytes and for each address byte received, FM24C256 responds with an acknowledge pulse. Master then provides a byte of data tobe written intothememory. Upon receiptofthis data, FM24C256 respondswithanacknowledge pulse. Themasterthenterminates the transfer by generating a stop condition, at which time the FM24C256 begins the internal write cycle to the memory. While the internal write cycle is in progress the FM24C256 inputs are disabled, and the device will not respondto any requests from the master for the duration of t wr. Refer Figure 4 for the address, acknowledge and datatransfersequence.

PAGE WRITE

To minimize write cycle time, FM24C256 offers Page Write feature, which allows simultaneous programming of up to 64 contiguous bytes. To facilitate this feature, the memory array is organized interms of "Pages". A Page consists of 64 contiguous byte locations starting at every 64-Byte address boundary (for example, starting atarray address $0 \times 0000,0 \times 0040,0 \times 0080$ etc.). Page Write operation is confinedto a single page. In otherwords aPage Write operation will notcross overto locations onthenext page but will "roll over" to the beginning of the same page wheneverend of page is reached and additional data bytes are a continued to be provided. A Page Write operation can be initiated to beginatany location within apage (starting address ofthe Page Write operation need not be the starting address of a Page).

Page Write is initiated in the same manner as the Byte Write operation; but instead ofterminating the cycle after transmitting the first data byte, the master canfurther transmit up to 63 more bytes. After the receipt of each byte, FM24C256 will respond with an acknowledge pulse, incrementthe internal address counterto thenextaddress, andis ready to acceptthe nextdata. If the master should transmit more than 64 bytes priorto generating the STOP condition, the address counter will "roll over" and previously loaded data will be re-loaded. As withthe Byte Write operation, all inputs are disabled until completion of the internal write cycle. Refer Figure 5 for the address, acknowledge, and data transfer sequence.

Acknowledge Polling

Once the stop condition is issuedto indicate the end of the host's write operation, the FM24C256 initiates the internal write cycle. ACK polling canbeinitiatedimmediately. This involvesissuingthe startconditionfollowed bythe slave addressfora write operation. If the FM24C256 is still busy with the write operation, no ACK will be returned. If the FM24C256 has completed the write operation, an ACK will be returned and the host can then proceed with the next read or write operation.

Write Protection

Programming of the entire memory will nottake placeiftheWP pin of the FM24C256 is connected to V cc. The FM24C256 will respondtoslave andbyte addresses; butifthememory accessed is write protected by the WP pin, the FM24C256 will not generate an acknowledge after the first byte of data has been received. Thusthe program cycle will notbestarted when the stop condition is asserted.

Byte Write (Figure 4)

Page Write (Figure 5)

Read Operations

Read operations are initiated in the same manner as write operations, with the exception that the R/W bit of the slave address is set to a one. There are three basic read operations: current address read, random read, and sequential read.

Current Address Read

Internally the FM24C256 contains an address counter that maintains the address of the last byte accessed, incremented by one. Therefore, ifthe lastaccess (either a read orwrite) was to address n , the next read operation would access data from addressn+1. Upon receipt of the slave address with R/W $\overline{\text { set to "1," the }}$ FM24C256 issues an acknowledge and transmits the eight bit word. The master will not acknowledge the transfer but does generate a stop condition, and therefore the FM24C256 discontinuestransmission. Refer Figure 6 forthe sequence of address, acknowledge and data transfer.

Random Read

Random read operations allow the masterto access anymemory location in a random manner. Priorto issuing the slave address with the R/W bit set to "1," the master must first perform a "dummy" write operation. The masterissues the startcondition, slave address with the R/W $\overline{\text { bit set to " } 0 \text { " and then the byte }}$ address. After the byte address acknowledge, the masterimmediately issues anotherstart condition and the slave address with the R/W bit set to one. This will be followed by an acknowledge from the FM24C256 and then by the eight bit word. The master
will not acknowledge the transfer but does generate the stop condition, and therefore the FM24C256 discontinues transmission. Refer Figure 7 for the address, acknowledge, and data transfersequence.

Sequential Read

Sequential reads can be initiated as either acurrent address read or randomaccess read. The firstword is transmitted in the same manner as the other read modes; however, the master now responds with an acknowledge, indicating it requires additional data. The FM24C256 continues to output data for each acknowledge received. The read operation isterminated by the masternot responding with an acknowledge or by generating a stop condition.

The data output is sequential with the data from address n followed by the data from $\mathrm{n}+1$. The address counter for read operations increments all word address bits, allowing the entire memory contents to be serially read during one operation. After the entire memory has been read, the counter "rolls over" to the beginning of the memory. FM24C256 continuesto output datafor each acknowledge received. Refer Figure 8 for the address, acknowledge, and datatransfersequence.

Current Address Read (Figure 6)

Random Read (Figure 7)

Sequential Read (Figure 8)

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted

Life Support Policy

Fairchild's products are not authorized for use as critical components in life support device or systems without the express written approval of the President of FairchildSemiconductor Corporation. As used herein:

1. Life supportdevices orsystems are device or systems which, (a) are intended forsurgicalimplantintothebody, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, canbe reasonably expected to result in a significant injury to the user.
2. Acritical component is any component of alife support device or system whose failure to perform can be reasonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor			Fairchild Semiconductor	Fairchild Semiconductor
Americas	Europe			Hong Kong	Japan Ltd.
Customer Response Center		Fax:	$+44(0)$	$1793-856858$	8/F,Room 808, EmpireCentre

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patentlicenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

