

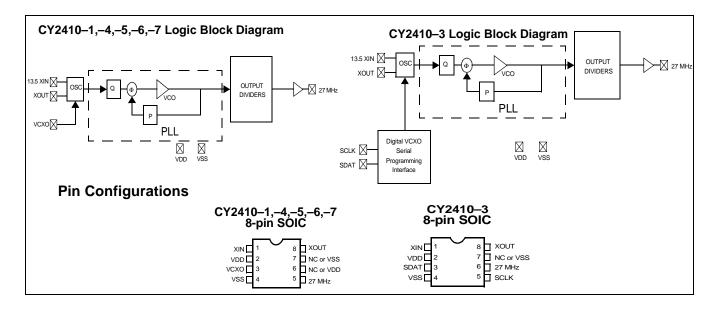
CY2410

MPEG Clock Generator with VCXO

Features

- Integrated phase-locked loop (PLL)
- Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- 3.3V operation
- Compatible with MK3727 (-1, -4, -5, -6, -7)

Benefits


- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs
- Large ±150-ppm range, better linearity

- · Application compatibility for a wide variety of designs
- · Enables design compatibility
- Advanced Features
- Serial programming interface (CY2410-3 only)
- Lower drive strength settings (CY2410-4, -6)
- Matches nonlinear MK3727A VCXO control curve (-5, -6)
- Matches nonlinear MK3727C VCXO control curve (-7)

Benefits

- Digital VCXO control
- Electromagnetic interference (EMI) reduction for standards compliance
- · Second source for existing designs

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY2410–1	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Compatible with MK3727
CY2410–3	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Serial programming interface
CY2410–4	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Same as CY2410–1 except lower drive strength settings
CY2410–5	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Matches MK3727A nonlinear VCXO Control Curve
CY2410–6	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Same as CY2410–5 except lower drive strength
CY2410–7	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Matches MK3727C nonlinear VCXO control curve

Cypress Semiconductor Corporation Document #: 38-07317 Rev. *D 3901 North First Street

San Jose, CA 95134 • 408-943-2600 Revised December 11, 2003

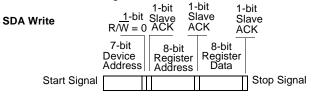
Pin Descriptions for CY2410-1, -4, -5, -6, -7

Name	Pin Number	Description	
X _{IN}	1	Reference crystal input	
V _{DD}	2	Voltage supply	
V _{CXO}	3	Input analog control for V _{CXO}	
V _{SS}	4	Ground	
27 MHz	5	27-MHz clock output	
NC/V _{DD}	6	No Connect or voltage supply	
NC/V _{SS}	7	No Connect or ground	
X _{OUT} ^[1]	8	Reference crystal output	

Pin Description for CY2410–3

Name	Pin Number	Description	
X _{IN}	1	Reference crystal input	
V _{DD}	2	Voltage supply	
SDAT	3	Serial data input for DCXO control	
V _{SS}	4	Ground	
SCLK	5	Serial clock input for DCXO control	
27 MHz	6	27-MHz clock output	
NC/V _{SS}	7	No Connect or ground	
X _{OUT} ^[1]	8	Reference crystal output	

Pullable Crystal Specifications^[2]


Parameter	Description	Condition	Min.	Тур.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, funda- mental mode, AT cut	-	13.5	-	MHz
C _{LNOM}	Nominal load capacitance		_	14	_	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamen- tal mode ESR	Ratio used because typical R_1 values are much less than the maximum spec.	3	_	_	
DL	Crystal drive level	No external series resistor assumed	-	0.5	2.0	mW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	_	_	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	_	-150	ppm
C ₀	Crystal shunt capacitance		_	_	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	-	250	
C ₁	Crystal motional capacitance		14.4	18	21.6	pF

Notes:
1. Float X_{OUT} if X_{IN} is externally driven.
2. Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M,Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.

Serial Programmable Interface Protocol

The CY2410-3 utilizes a two-wire-interface SDAT and SCLK that operates up to 400 kbits/sec in Read or Write mode. The basic Write serial format is as follows: start bit; 7-bit device address (DA); R/W bit; slave clock acknowledge (ACK); 8-bit memory address (MA); ACK; 8-bit data; ACK; 8-bit data in MA+1 if desired; ACK; 8-bit data in MA+2; ACK; etc. until stop bit, as illustrated in *Figure 1*.

Data Valid

Data is valid when the clock is HIGH, and may only be transitioned when the clock is low as illustrated in *Figure 2*.

Data Frame

Every new data frame is indicated by a start and stop sequence, as illustrated in *Figure 3*.

Start Sequence

A start frame is indicated by SDAT going LOW when SCLK is HIGH. Every time a start signal is given, the next 8-bit data must be the device address (7 bits) and a R/W bit (0 for Write), followed by register address (8 bits) and register data (8 bits). See *Figure 3.*

Stop Sequence

A stop frame is indicated by SDAT going HIGH when SCLK is HIGH. A stop frame frees the bus for writing to another part on the same bus or writing to another random register address. See *Figure 3*.

Acknowledge Pulse

During Write mode, the CY2410-3 will respond with an ACK pulse after every 8 bits. This is accomplished by pulling the SDAT line LOW during the next clock cycle after the eighth bit is shifted in.

Device Address

The 7-bit device address is 1101001.

Register Address

The 8-bit address for the VCXO register is 00010011.

Register Data

The register data can be any value between 00H–FFH. As you increase the value, the capacitance on the $X_{\rm IN}$ and $X_{\rm OUT}$ pins will increase, thereby decreasing the xtal frequency.

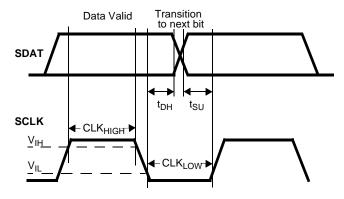


Figure 2. Data Valid and Data Transition Periods

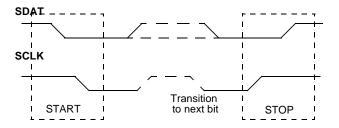


Figure 3. Start and Stop Frame

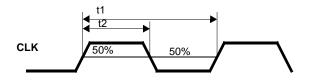


Figure 4. Duty Cycle Definition; DC = t2/t1

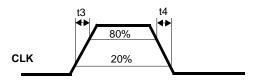


Figure 5. Rise and Fall Time Definitions: ER = 0.6 x VDD / t3, EF = 0.6 x VDD / t4

Absolute Maximum Conditions

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	-0.5	7.0	V
Τ _S	Storage Temperature ^[3]	-65	125	°C
TJ	Junction Temperature	-	125	°C
	Digital Inputs	V _{SS} – 0.3	V _{DD} + 0.3	V
	Digital Outputs referred to V _{DD}	V _{SS} – 0.3	V _{DD} + 0.3	V
	Electrostatic Discharge	2000		V

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0	-	70	°C
C _{LOAD}	Max. Load Capacitance	_	-	15	pF
f _{REF}	Reference Frequency	_	13.5	-	MHz
t _{PU}	Power up time for V _{DD} to reach minimum speci- fied voltage (power ramp must be monotonic)	0.05	_	500	ms

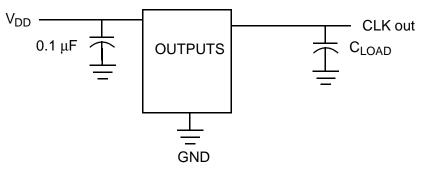
DC Electrical Specifications

Parameter	Name	Description	Min.	Тур.	Max.	Unit
I _{ОН}	Output HIGH Current –1,3,5,7	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$	12	24	-	mA
I _{OL}	Output LOW Current -1,3,5,7	V _{OL} = 0.5, V _{DD} = 3.3V	12	24	-	mA
I _{ОН}	Output HIGH Current –4,6	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$	6	18	-	mA
I _{OL}	Output LOW Current –4,6	V _{OL} = 0.5, V _{DD} = 3.3V	6	18	_	mA
C _{IN}	Input Capacitance		_	-	7	pF
I _{IZ}	Input Leakage Current		-	5	_	μA
f _{∆XO}	V _{CXO} pullability range:-1,-3,-4,-5,-6		<u>+</u> 150	-	_	ppm
	V _{CXO} pullability range:-7		<u>+</u> 115	-	-	ppm
V _{VCXO}	V _{CXO} input range		0	-	V _{DD}	V
I _{VDD}	Supply Current		-	30	35	mA

AC Electrical Specifications (V_{DD} = 3.3V)^[4]

Parameter ^[4]	Name	Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in <i>Figure 4</i> , 50% of V_{DD}	45	50	55	%
ER _{OR}		Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.8	1.4	-	V/ns
ER _{OF}	Falling Edge Rate -1, -3, -5, -7	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.8	1.4	-	V/ns
ER _{OR}	Rising Edge Rate –4, –6	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.7	1.1	-	V/ns
ER _{OF}	Falling Edge Rate –4, –6	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure 5</i> .	0.7	1.1	-	V/ns
t ₉	Clock Jitter –1, –3, –5, –7	Peak-to-peak period jitter	-	140	-	ps
t ₉	Clock Jitter –4, –6	Peak-to-peak period jitter	-	150	-	ps
t ₁₀	PLL Lock Time		_	_	3	ms

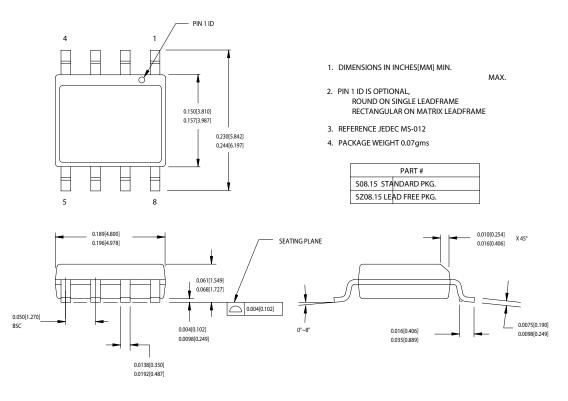
Notes:


Rated for ten years.
 Not 100% tested.

Serial Programming Interface Timing Specifications

Parameter	Description	Min.	Max.	Unit
f _{SCL}	Frequency of SCLK		400	kHz
	Start mode time from SDAT LOW to SCLK LOW	0.6		μS
CLK _{LOW}	SCLK LOW period	1.3		μS
CLK _{HIGH}	SCLK HIGH period	0.6		μS
t _{SU}	Data transition to SCLK HIGH	100		ns
t _{DH}	Data hold (SCLK LOW to data transition)	0		ns
	Rise time of SCLK and SDAT		300	ns
	Fall time of SCLK and SDAT		300	ns
	Stop mode time from SCLK HIGH to SDA HIGH	0.6		μs
	Stop mode to start mode	1.3		μs

Test and Measurement Set-up


Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY2410SC-1	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY2410SC-1T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY2410SC-3	8-pin SOIC	Commercial	3.3V	Digital VCXO control
CY2410SC-3T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Digital VCXO control
CY2410SC-4	8-pin SOIC	Commercial	3.3V	Lower drive strength (reduced EMI)
CY2410SC-4T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Lower drive strength (reduced EMI)
CY2410SC-5	8-pin SOIC	Commercial	3.3V	Matches nonlinear MK3727A VCXO control curve
CY2410SC-5T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Matches nonlinear MK3727A VCXO control curve
CY2410SC-6	8-pin SOIC	Commercial	3.3V	Lower drive strength version of CY2410–5
CY2410SC-6T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Lower drive strength version of CY2410–5
CY2410SC-7	8-pin SOIC	Commercial	3.3V	Matches MK3727C nonlinear VCXO control curve
CY2410SC-7T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Matches MK3727C nonlinear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

	Document Title: CY2410 MPEG Clock Generator with VCXO Document Number: 38-07317				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	111553	02/12/02	CKN	New Data Sheet	
*A	114937	09/24/02	CKN	Added -6 to data sheet, Advance Information to Final	
*В	121418	12/06/02	CKN	Updated the Pullable Crystal Specifications table on page 2	
*C	126905	06/17/03	RGL	Added -7 part to data sheet Added new parameter on the Pullable Crystal table Power-up requirements added to the operating conditions	
*D	131100	01/20/03	RGL	Added VCXO –7 pullability range in the DC Specs with min. value of \pm 115ppm	