

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am54S/74S160 • Am54S/74S161 • Am54S/74S163

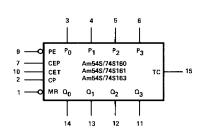
BCD Decade/Four-Bit Binary Counters

Distinctive Characteristics

- Fully synchronous counting
- Fully synchronous parallel loading

- Edge-triggered clock action
- Advanced Schottky technology
- 100% MIL-STD-883 reliability assurance test

FUNCTIONAL DESCRIPTION

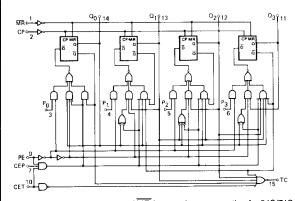

The Am54S/74S160 is a fully synchronous 4-bit decimal counter. The Am54S/74S161 and Am54S/74S163 are fully synchronous 4-bit binary counters. With the parallel enable (\overline{PE}) LOW, data on the P $_0$ -P $_3$ inputs is parallel loaded on the positive clock transition. When \overline{PE} is HIGH and both count enables CEP and CET are also HIGH, counting will occur on the LOW-to-HIGH clock transition.

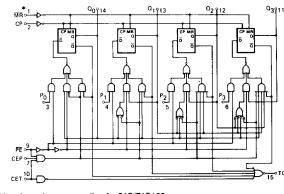
The terminal count state (1001 for the Am54S/74S160 and 1111 for both the Am54S/74S161 and Am54S/74S163) is decoded and ANDed with CET in the terminal count (TC) output. If CET is HIGH and the counter is in its terminal count state, then TC is HIGH.

Both the Am54S/74S160 and Am54S/74S161 have an asynchronous master reset (\overline{MR}) . A LOW on the \overline{MR} input forces the Q outputs LOW independent of all other inputs.

The Am54S/74S163 has a synchronous master reset ($\overline{\text{MR}}$). A LOW on the $\overline{\text{MR}}$ input forces the Q outputs LOW after the next clock pulse independent of all other inputs. The only requirements on the $\overline{\text{PE}}$, CEP, CET and P₀-P₃ inputs is that they meet the set-up time requirements before the clock LOW-to-HIGH transition.

LOGIC SYMBOL

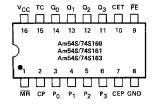



 $V_{CC} = Pin 16$ GND = Pin 8

Am54S/74S160

LOGIC DIAGRAMS

Am54S/74S161/S163



*MR is asynchronous on the Am54S/74S161 and synchronous on the Am54S/74S163

ORDERING INFORMATION

Package Type	Temperature Range	Am54S/ 74S160 Order Number	Am54S/ 74S161 Order Number	Am54S/ 74S163 Order Number
Molded DIP	0 to +75°C	SN74S160N	SN74S161N	SN74S163N
Hermetic DIP	0 to +75°C	SN74S160J	SN74S161J	SN74S163J
Dice	0 to +75°C	SN74S160X	SN74S161X	SN74S163X
Hermetic DIP	-55 to +125°C	SN54S160J	SN54S161J	SN54S163J
Hermetic Flat Pak	-55 to +125°C	SN54S160W	SN54S161W	SN54S163W
Dice	-55 to +125°C	SN54S160X	SN54S161X	SN54S163X

CONNECTION DIAGRAM Top View

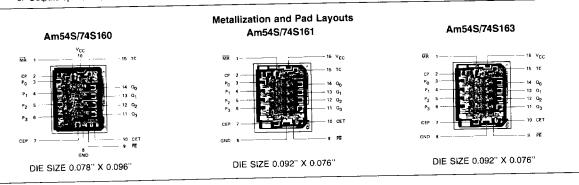
Note: Pin 1 is marked for orientation.

AXIMOM RATINGS (Above which the desire has a	
T	_65°C to +150°C
orage Temperature	-55°C to +125°C
mperature (Ambient) Under Bias	
pply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7V
2 Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
	-0.5V to +5.5V
Comput Voltage	30mA
COutput Current, Into Outputs	
C Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

 $T_A = 0 \text{ to } +75^{\circ}\text{C}$ 4m74S160X, Am74S161X, Am74S163 $T_A = -55 \text{ to } + 125^{\circ}\text{C}$ Am54S160X, Am54S161X, Am54S163

 $V_{CC} = 5.0V \pm 5\% \text{ (COM'L)}$ $V_{CC}^{-2} = 5.0V \pm 10\% (MIL)$


MIN = 4.75VM1N = 4.5V

MAX = 5.25VMAX = 5.5V

arameters	Description	Test Conditions	(Note 1)		Min	Typ (Note 2)	Max	Units
	<u> </u>	$V_{CC} = MIN, I_{OH} = -1mA$	MIL		2.5	3.4		Volts
V _{OH}	Output HIGH Voltage	V _{IN} = V _{IH} or V _{IL} COM'L		∕l'L	2.7	3.4		
V _{OL}	Output LOW Voltage	$V_{CC} = MIN$, $I_{OL} = 20mA$ $V_{IN} = V_{IH}$ or V_{IL}				0.35	0.5	Volts
V _{IH}	Input HIGH Level	Guaranteed input logical HI voltage for all inputs	GH		2.0			Volts
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
V _I	Input Clamp Voltage	V_{CC} = MIN, I_{IN} = -18 mA					-1.2	Volts
			P; MR; CE	Р			-2.0	
i _{n_}		$V_{IN} = 0.5V$	CET				-3.0	mA
(Note 3)	Input LOW Current		PE				-4.0	
			СР				-5.0	
			P; MR; CE	Р			50	
l _{iH}		$V_{CC} = MAX,$	CET				75	μΑ
(Note 3)	Input HIGH Current	$V_{IN} = 2.7V$	PE				100	
			СР				125	
<u> </u>	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 5.5V$	= MAX, V _{IN} = 5.5V				1.0	mA
l _{SC}	Output Short Circuit Current (Note 4)	V _{CC} = MAX			- 4 0	-65	-100	mA
	Power Supply Current Am54S/74S160/161 only	V _{CC} = MAX (Note 5)				82	127	mA
lcc	Am54S/74S163 only	V _{CC} = MAX (Note 6)				96	150	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading.
- 3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).
- 4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
- 5. Outputs open; $\overline{MR} = 0V$; all other inputs HIGH.
- 6. Outputs open; \overline{MR} , CP, CET = HIGH; all other inputs LOW.

DEFINITION OF FUNCTIONAL TERMS

PE Parallel Enable. When PE is LOW, the parallel inputs, P₀ through P₃, are enabled. When PE is

HIGH, the count function is possible.

CEP Count Enable Parallel. CEP is one of the count enable inputs that must be HIGH for the counter

to count.

CET Count Enable Trickle. CET is one of the count enable inputs that must be HIGH for the counter

to count. In addition, CET is included in the TC output gate and must be HIGH for TC to be

HIGH.

Clock Pulse. Causes the required output change on the LOW-to-HIGH transition (Edge-

triggered).

Master Reset (Am54S/74S160/S161). When the asynchronous master reset is LOW, the Q_0 through Q_3 outputs will be LOW regardless of

the other inputs.

MR Master Reset (Am54S/74S163). When the synchronous master reset is LOW the Q₀ through Q₃ outputs will be LOW following the next clock

pulse regardless of the other inputs.

P₀, P₁, P₂, P₃ The parallel data inputs for the four internal flipflops.

Q₀, Q₁, Q₂, Q₃ The four parallel outputs from the counter.

TC

CP

MR

Terminal Count. The terminal count output will be HIGH for CET HIGH and binary nine on the Am54S/74S160 or CET HIGH and binary 15 on the Am54S/74S161.

LOADING RULES (In Unit Loads)

			Fan	-out
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW
MR	1	1	-	_
СР	2	2.5	-	_
PO	3	1	_	-
P ₁	4	1	_	_
P ₂	5	1	_	_
P ₃	6	1	_	_
CEP	7	1	_	
GND	8	_		
PE	9	2	_	-
CET	10	1.5	_	_
Q ₃	11	_	20	10
a ₂	12		20	10
Q ₁	13		20	10
a ₀	14	_	20	10
тс	15	-	20	10
v _{cc}	16	-	_	-

A Schottky TTL Unit Load is defined as $50\mu A$ measured at 2.7V HIGH and -2.0 mA measured at 0.5V LOW.

FUNCTION TABLE

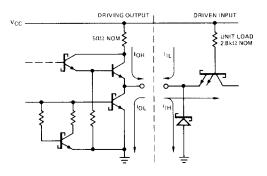
DEVICE TYPE	INPUTS							OUTPUTS					
	СР	MR	PE	CEP	ÇET	Po	P ₁	P ₂	P ₃	Qo	Q ₁	Q ₂	Q ₃
Am54S/74S160/S161	Х	L	х	х	x	х	х	х	х	L	L	L	L
Am54S/74S163	1	L	Х	х	×	Х	х	х	×	L	L	L	L
Am54S/74S160/S161/S163	t	Н	L	х	х	D ₀	D ₁	D ₂	D ₃	Do	D ₁	D ₂	D ₃
	1	н	н	L	L	х	х	x	х	NC	NC	NC	NC
	1	н	н	L	н	Х	х	х	х	NC	NC	NC	NC
	1	Н	Н	Н	L	х	х	Х	x	NÇ	NC	NC.	NC
	t	н	н	Н	н	Х	X	х	×		co	UNT	

H = HIGH

X = Don't Care

L = LOW

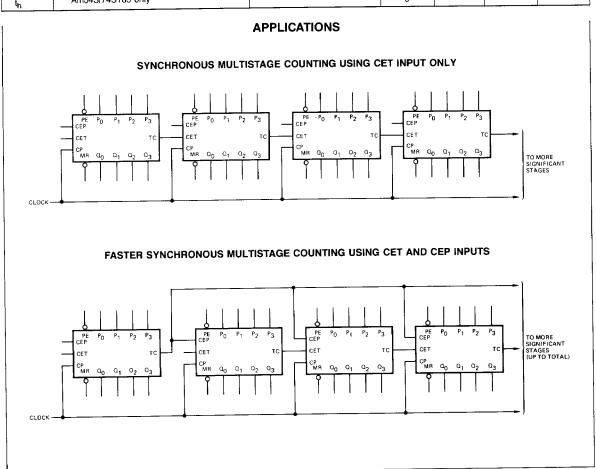
NC = No Change


D_i may be either HIGH or LOW ↑ LOW-to-HIGH Transition

TERMINAL COUNT (TC) TRUTH TABLE

	S160		А	тс						
CET	\mathbf{q}_0	01	02	03	CET	o_0	Ω1	02	Ο3	
Н	н	L	L	н	н	н	н	Н	н	H
L	х	×	×	×	L	×	×	×	×	Ł
x	L	×	×	×	×	L	×	×	х	L
×	x	н	×	x	×	х	L	×	х	L
×	х	x	н	x	×	х	×	L	х	L
×	х	х	×	L	×	×	×	×	L	L

H = HIGH L = LOW X = Don't Care


SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

SWITCHING CHARACTERISTICS (T_A = +25°)

arameters	Description	Test Conditions	Min	Тур	Max	Units
f _{MAX}	Count Frequency		70	100		MHz
t _{PLH}				6	9	l ⊣ ns
tPHL	Clock to Q			8.5	13	
t _{PLH}	0			12	18	ns ns
tPHL	Clock to TC			8	12	
t _{PLH}				6.5	10	ns
tPHL	CET to TC			6.5	10	
t _{PHL}	MR to Q (Am54S/74S160/161 only)			14	20	ns
t _s	Recovery Time for MR (inactive) Am54S/74S160 and Am54S/74S161 only					ns
t _{pw}	Master Reset Pulse Width	$R_L = 280\Omega$	13			ns
-	Clock Pulse Width HIGH		6			ns
t _{pw}	Clock Pulse Width LOW		10			
t _s			8			ns
t _h	Data to Clock		0			
ts	= 0.1		16			- ns
th	PE to Clock		0			
t _s		7	12			ns
th	CEP or CET to Clock		0			
t _s	MR to Clock		14			ns
th	Am54S/74S163 only		0			,13

