

High-Performance LVDS Oscillator with Frequency Margining - Pin Control

Features

- Low jitter crystal oscillator (XO)
- Less than 1 ps typical RMS phase jitter
- Differential LVDS output
- Output frequency from 50 MHz to 690 MHz
- Two frequency margining control pins (FS0, FS1)
- Factory configured or field programmable
- Integrated phase-locked loop (PLL)
- Supply voltage: 3.3 V or 2.5 V
- Pb-free package: 5.0 × 3.2 mm LCC
- Commercial and industrial temperature ranges

Functional Description

The CY2XF33LXC533T is a high-performance and high-frequency crystal oscillator (XO). It uses a Cypress proprietary low-noise PLL to synthesize the frequency from an integrated crystal. The output frequency can be changed through two select pins, allowing easy frequency margin testing in applications.

The CY2XF33LXC533T is available as a factory configured device or as a field programmable device.

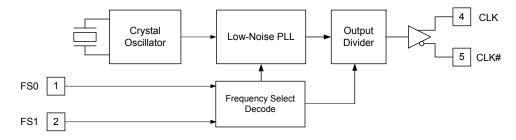
The FS0 and FS1 pins select between four different output frequencies, as shown in Table 2 on page 4. Frequency margining is a common application for this feature. One frequency is used for the standard operating mode of the device, while the other frequencies are available for margin testing,

either during product development or in system manufacturing test.

Table 1. Frequency Select

FS1	FS0	Output Frequency
0	0	Frequency 0
0	1	Frequency 1
1	0	Frequency 2
1	1	Frequency 3

When changing the output frequency, the frequency transition is not guaranteed to be smooth. There can be frequency excursions beyond the start frequency and the new frequency. Glitches and runt pulses are possible, and time must be allowed for the PLL to relock.


Programming Description

The CY2XF33LXC533T is a programmable device. Before being used in an application, it must be programmed with the output frequencies and other variables described in a later section. Two different device types are available, each with its own programming flow. They are described in the following sections.

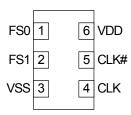
Factory Configured CY2XF33LXC533T

For customers wanting ready-to-use devices, the CY2XF33LXC533T is available with no field programming required. All requests are submitted to the local Cypress Field Application Engineer (FAE) or sales representative. After the request is processed, the user receives a new part number, samples, and data sheet with the programmed values. This part number is used for additional sample requests and production orders.

Logic Block Diagram

Cypress Semiconductor CorporationDocument Number: 001-72034 Rev. *C

Contents


Pin Configuration	3
Pin Definitions	
Application-Specific Factory Configurations	4
Programming Variables	
Output Frequencies	4
Industrial versus	
Commercial Device Performance	4
Phase Noise versus Jitter Performance	4
Absolute Maximum Conditions	5
Operating Conditions	5
DC Electrical Characteristics	6
AC Electrical Characteristics	7
Termination Circuits	7
Switching Waveforms	8

Ordering Information	9
Possible Configuration	
Ordering Code Definitions	
Package Drawings and Dimensions	
Acronyms	11
Document Conventions	
Units of Measures	11
Document History Page	12
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	13
Cypress Developer Community	
Technical Support	

Pin Configuration

Figure 1. 6-pin Ceramic LCC pinout - CY2XF33LXC533T

Pin Definitions

Pin	Name	I/O Type	Description
1, 2	FS0, FS1	CMOS input	Frequency select
4, 5	CLK, CLK#	LVDS output	Differential output clock
6	VDD	Power	Supply voltage: 2.5 V or 3.3 V
3	VSS	Power	Ground

Document Number: 001-72034 Rev. *C

Application-Specific Factory Configurations

Part Number	VDD	FS1	FS0	Output Frequency	RMS Phase Ji	itter (Random)
Part Number	VDD	131	130	Output Frequency	Offset Range	Jitter (Typical)
CY2XF33LXC533T	3.3 V	0	0	350.00 MHz	12 kHz to 20 MHz	0.51 ps
		0	1	400.00 MHz		0.49 ps
		1	0	533.00 MHz		1.00 ps
		1	1	200.00 MHz		0.55 ps

Programming Variables

Output Frequencies

The CY2XF33LXC533T is programmed with up to four independent output frequencies, which are then selected using the FS0 and FS1 pins. The device can synthesize frequencies to a resolution of 1 part per million (ppm), but the actual accuracy of the output frequency is limited by the accuracy of the integrated reference crystal.

The CY2XF33LXC533T has an output frequency range of 50 MHz to 690 MHz, but the range is not continuous. The CY2XF33LXC533T cannot generate frequencies in the ranges of 521 MHz to 529 MHz and 596 MHz to 617 MHz.

Industrial versus Commercial Device Performance

Industrial and Commercial devices have different internal crystals. This has a potentially significant impact on performance levels for applications requiring the lowest possible phase noise. CyberClocks Online Software displays expected performance for both options.

Phase Noise versus Jitter Performance

In most cases, the device configuration for optimal phase noise performance is different from the device configuration for optimal cycle to cycle or period jitter. CyberClocks Online Software includes algorithms to optimize performance for either parameter.

Table 2. Device Programming Variables

Variable
Output frequency 0 (Power on default)
Output frequency 1
Output frequency 2
Output frequency 3
Optimization (phase noise or jitter)
Temperature range (Commercial or industrial)

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	Supply voltage	-	-0.5	4.4	V
V _{IN} ^[1]	Input voltage, DC	Relative to V _{SS}	-0.5	V _{DD} + 0.5	V
T _S	Temperature, storage	Non operating	- 55	135	°C
T _J	Temperature, junction	-	-40	135	°C
ESD _{HBM}	ESD protection (human body model)	JEDEC STD 22-A114-B	2000	-	V
$\Theta_{JA}^{[2]}$	Thermal resistance, junction to ambient	0 m/s airflow	6	4	°C/W

Operating Conditions

Parameter	Description		Тур	Max	Unit
V_{DD}	3.3 V supply voltage range		3.3	3.465	V
	2.5 V supply voltage range	2.375	2.5	2.625	V
T _{PU}	Power up time for V_{DD} to reach minimum specified voltage (power ramp is monotonic) $ \\$	0.05	_	500	ms
T _A	Ambient temperature (commercial)		_	70	°C
	Ambient temperature (industrial)	-4 0	_	85	°C

Notes

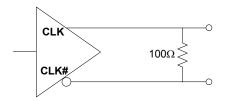
Document Number: 001-72034 Rev. *C

The voltage on any input or I/O pin cannot exceed the power pin during power up.
 Simulated. The board is derived from the JEDEC multilayer standard. It measures 76 × 114 × 1.6 mm and has 4-layers of copper (2/1/1/2 oz.). The internal layers are 100% copper planes, while the top and bottom layers have 50% metalization. No vias are included in the model.

DC Electrical Characteristics

Parameter	Description	Condition	Min	Тур	Max	Unit
I _{DD} ^[3]	Operating supply current	V _{DD} = 3.465 V, CLK = 150 MHz, output terminated	-	_	120	mA
		V _{DD} = 2.625 V, CLK = 150 MHz, output terminated	-	_	115	mA
V _{OD}	LVDS differential output voltage	V _{DD} = 3.3 V or 2.5 V, defined in Figure 3 on page 8 as terminated in Figure 2 on page 7	247	-	454	mV
ΔV _{OD}	Change in V _{OD} between complementary output states	V _{DD} = 3.3 V or 2.5 V, defined in Figure 3 on page 8 as terminated in Figure 2 on page 7	-	-	50	mV
V _{OS}	LVDS offset output voltage	V _{DD} = 3.3 V or 2.5 V, defined in Figure 4 on page 8 as terminated in Figure 2 on page 7	1.125	_	1.375	V
ΔV _{OS}	Change in V _{OS} between complementary output states	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 100 Ω between CLK and CLK#	-	_	50	mV
V _{IH}	Input high voltage	_	0.7 × V _{DD}	-	_	V
V _{IL}	Input Low voltage	_	_	-	0.3 × V _{DD}	V
I _{IHO}	Input high current, FS0 pin	Input = V _{DD}	_	-	115	μΑ
I _{IH1}	Input high current, FS1 pin	Input = V _{DD}	_	-	10	μΑ
I _{ILO}	Input low current, FS0 pin	Input = V _{SS}	-50	_	_	μΑ
I _{IL1}	Input low current, FS1 pin	Input = V _{SS}	-20	_	-	μΑ
C _{IN0} ^[4]	Input capacitance, FS0 pin	_	_	15	-	pF
C _{IN1} ^[4]	Input capacitance, FS1 pin	_	_	4	_	pF

I_{DD} includes ~4 mA of current that is dissipated externally in the output termination resistors.
 Not 100% tested, guaranteed by design and characterization.



AC Electrical Characteristics

Parameter [5]	Description	Condition	Min	Тур	Max	Unit
F _{OUT}	Output frequency [6]	-	50	_	690	MHz
FSC	Frequency stability, commercial devices [7]	T _A = 0 °C to 70 °C	_	_	±35	ppm
FSI	Frequency stability, industrial devices [7]	$T_A = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$	-	_	±55	ppm
AG	Aging, 10 years	-	_	_	±15	ppm
T _{DC}	Output duty cycle	F ≤ 450 MHz, measured at zero crossing	45	50	55	%
		F > 450 MHz, measured at zero crossing	40	50	60	%
T _R , T _F	Output rise and fall time	20% and 80% of full output swing	-	0.35	1.0	ns
T _{LOCK}	Startup time	Time for CLK to reach valid frequency measured from the time $V_{DD} = V_{DD(min)}$	_	_	5	ms
T _{LFS}	Re-lock time	Time for CLK to reach valid frequency from FS0 or FS1 pin change	-	_	1	ms
$T_{Jitter(\phi)}$	RMS phase jitter (random)	f _{OUT} = 106.25 MHz (12 kHz–20 MHz)	-	1	_	ps

Termination Circuits

Figure 2. LVDS Termination

- Not 100% tested, guaranteed by design and characterization.
 This parameter is specified in CyberClocks Online software.
 Frequency stability is the maximum variation in frequency from F₀. It includes initial accuracy, plus variation from temperature and supply voltage.

Switching Waveforms

Figure 3. Output Voltage Swing

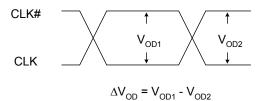


Figure 4. Output Offset Voltage

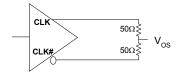


Figure 5. Output Duty Cycle Timing

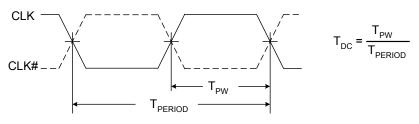


Figure 6. Output Rise and Fall Time

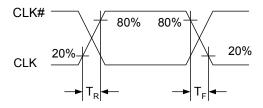
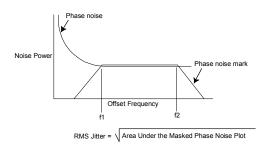
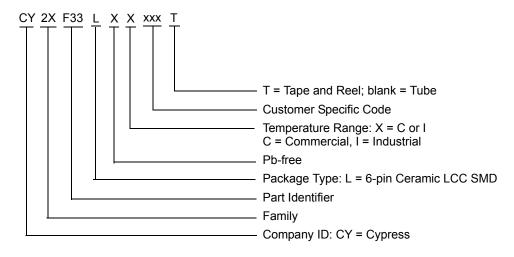



Figure 7. RMS Phase Jitter

Ordering Information

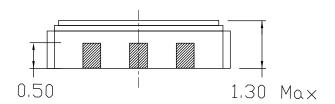

Part Number Configuration		Package Description	Product Flow	
Pb-free				
CY2XF33LXC533T [8]	Factory-configured	6-pin Ceramic LCC SMD - Tape and Reel	Commercial, 0 °C to 70 °C	

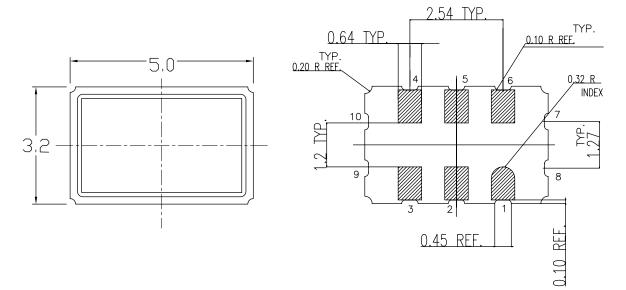
Possible Configuration

Some product offerings are factory programmed customer specific devices with customized part numbers. The Possible Configurations table shows the available device types, but not complete part numbers. Contact your local Cypress FAE of Sales Representative for more information.

Part Number [9]	Configuration	Package Description	Product Flow
Pb-free			
CY2XF33LXCxxxT	Factory Configured	6-pin Ceramic LCC SMD - Tape and Reel	Commercial, 0 °c to 70 °C
CY2XF33LXIxxxT	Factory Configured	6-pin Ceramic LCC SMD - Tape and Reel	Industrial, –40 °C to 85 °C

Ordering Code Definitions


Notes


- 8. Device configuration details are described in the Application-Specific Factory Configurations on page 4.
- 9. "xxx" is a factory assigned code that identifies the programming option. For more details, contact your local Cypress FAE or Sales Representative.

Package Drawings and Dimensions

Figure 8. 6-pin Ceramic LCC (5.0 × 3.2 × 1.3 mm) LZ06A Package Outline, 001-10044

Dimensions in mm Kyocera dwg ref KD-VA6432-A Package Weight ~ 0.12 grams

001-10044 *C

Acronyms

Acronym	Description		
CMOS	complementary metal oxide semiconductor		
ESD	electrostatic discharge		
FAE	field application engineer		
I/O	input/output		
JEDEC	joint electron devices engineering council		
LCC	leadless ceramic carrier		
LVDS	DS low voltage differential signaling		
PLL	phase locked loop		
SMD	SMD surface mount package		

Document Conventions

Units of Measures

Symbol	Unit of Measure			
°C	degree Celsius			
kHz	kilohertz			
MHz	megahertz			
μΑ	microamperes			
mA	milliamperes			
mm	millimeter			
ms	milliseconds			
mV	millivolts			
ns	nanoseconds			
Ω	ohms			
%	percent			
pF	picofarads			
ppm	parts per million			
ps	picoseconds			
V	volts			
W	watts			

Document History Page

Oocument Title: CY2XF33LXC533T, High-Performance LVDS Oscillator with Frequency Margining - Pin Control Oocument Number: 001-72034						
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change		
**	3341593	BASH	08/30/2011	New data sheet. Reviewed by RAJA from Tech Support.		
*A	4504048	XHT	09/19/2014	Updated Package Drawings and Dimensions: spec 001-10044 – Changed revision from *B to *C. Completing Sunset Review.		
*B	5475564	XHT	10/14/2016	Updated to new template. Completing Sunset Review.		
*C	5974188	AESATMP9	11/22/2017	Updated logo and copyright.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu PS₀C cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-72034 Rev. *C Revised November 22, 2017 Page 13 of 13