National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

National Semiconductor

LM2674

SIMPLE SWITCHER[®] Power Converter High Efficiency 500 mA Step-Down Voltage Regulator

General Description

The LM2674 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 500 mA load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5.0V, 12V, and an adjustable output version.

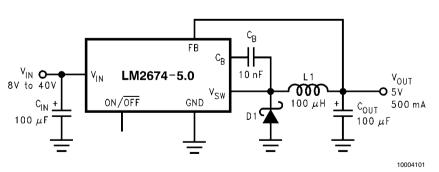
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and 5,514,947) and a fixed frequency oscillator.

The LM2674 series operates at a switching frequency of 260 kHz, thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the printed circuit board are the only heat sinking needed.

A family of standard inductors for use with the LM2674 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.

Other features include a guaranteed $\pm 1.5\%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10\%$ on the oscillator frequency. External shutdown is included, featuring typically 50 µA stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2674 buck regulator design procedure, there exists computer design software, *LM267X Made Simple* (version 6.0).


Features

- Efficiency up to 96%
- Available in SO-8, 8-pin DIP and LLP packages
 Computer Design Software *LM267X Made Simple* (version 6.0)
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21V to 37V
- ±1.5% max output voltage tolerance over line and load conditions
- Guaranteed 500mA output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8V to 40V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- Positive-to-Negative Converter

Typical Application

SIMPLE SWITCHER® is a registered trademark of National Semiconductor Corporation Windows® is a registered trademark of Microsoft Corporation.

August 15, 2011

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	45V
ON/OFF Pin Voltage	$-0.1V \le V_{SH} \le 6V$
Switch Voltage to Ground	-1V
Boost Pin Voltage	V _{SW} + 8V
Feedback Pin Voltage	$-0.3V \le V_{FB} \le 14V$
ESD Susceptibility	
Human Body Model (<i>Note 2</i>)	2 kV
Power Dissipation	Internally Limited
Operating Ratings	
Supply Voltage	6.5V to 40V
Junction Temperature Range	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$

Storage Temperature Range	–65°C to +150°C
Lead Temperature	
M Package	
Vapor Phase (60s)	+215°C
Infrared (15s)	+220°C
N Package (Soldering, 10s)	+260°C
LLP Package (See AN-1187)	
Maximum Junction Temperature	+150°C

Electrical Characteristics

LM2674-3.3 Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **bold type face** apply over **full Operating Temperature Range**.

Symbol	Parameter	Conditions	Typical (<i>Note 4</i>)	Min (<i>Note 5</i>)	Max (<i>Note 5</i>)	Units
SYSTEM	PARAMETERS Tes	st Circuit <i>Figure 2</i> (<i>Note 3</i>)				
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
V _{OUT}	Output Voltage	$V_{IN} = 6.5V$ to 40V, $I_{LOAD} = 20$ mA to 250 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 500 mA	86			%

LM2674-5.0

Symbol	Parameter	Conditions	Typical (<i>Note 4</i>)	Min (<i>Note 5</i>)	Max (<i>Note 5</i>)	Units
SYSTEM	PARAMETERS Tes	st Circuit <i>Figure 2</i> (<i>Note 3</i>)				
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
V _{OUT}	Output Voltage	$V_{IN} = 6.5V$ to 40V, $I_{LOAD} = 20$ mA to 250 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 500 mA	90			%

LM2674-12

Symbol	Parameter	Conditions	Typical (<i>Note 4</i>)	Min (<i>Note 5</i>)	Max (<i>Note 5</i>)	Units
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)						
V _{OUT}	Output Voltage	$V_{IN} = 15V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA	12	11.82/ 11.64	12.18/ 12.36	V
η	Efficiency	V _{IN} = 24V, I _{LOAD} = 500 mA	94			%

LM2674-ADJ

Symbol	Parameter	Conditions	Typ (<i>Note 4</i>)	Min (<i>Note 5</i>)	Max (<i>Note 5</i>)	Units
SYSTEM	PARAMETERS Tes	st Circuit <i>Figure 3</i> (<i>Note 3</i>)	-			
V _{FB}	Feedback Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA V_{OUT} Programmed for 5V (see Circuit of <i>Figure 3</i>)	1.210	1.192/ 1.174	1.228/ 1.246	v
V _{FB}	Feedback Voltage	$V_{IN} = 6.5V$ to 40V, $I_{LOAD} = 20$ mA to 250 mA V_{OUT} Programmed for 5V (see Circuit of <i>Figure 3</i>)	1.210	1.192/ 1.174	1.228/ 1.246	v
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 500 mA	90			%

All Output Voltage Versions

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **bold type face** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12$ V for the 3.3V, 5V, and Adjustable versions and $V_{IN} = 24$ V for the 12V version, and $I_{LOAD} = 100$ mA.

Symbol	Parameters	Conditions	Тур	Min	Max	Units
DEVICE P	ARAMETERS					
Ι _Q	Quiescent Current	V _{FEEDBACK} = 8V For 3.3V, 5.0V, and ADJ Versions	2.5		3.6	mA
		V _{FEEDBACK} = 15V For 12V Versions	2.5			mA
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 0V	50		100/ 150	μA
I _{CL}	Current Limit		0.8	0.62/ 0.575	1.2/ 1.25	А
IL	Output Leakage Current	$V_{IN} = 40V, ON/\overline{OFF}$ Pin = 0V $V_{SWITCH} = 0V$	1		25	μΑ
		$V_{\text{SWITCH}} = -1V, \text{ON}/\overline{\text{OFF}} \text{ Pin} = 0V$	6		15	mA
R _{DS(ON)}	Switch On-Resistance	I _{SWITCH} = 500 mA	0.25		0.40/ 0.60	Ω
f _o	Oscillator Frequency	Measured at Switch Pin	260	225	275	kHz
D	Maximum Duty Cycle		95			%
	Minimum Duty Cycle		0			%
BIAS	Feedback Bias Current	V _{FEEDBACK} = 1.3V ADJ Version Only	85			nA
V _{S/D}	ON/OFF Pin Voltage Theshold	Turn-On Threshold, Rising (<i>Note 7</i>)	1.4	0.8	2.0	v
I _{S/D}	ON/OFF Pin Current	ON/OFF Pin = 0V	20	7	37	μA
θ _{JA}	Thermal Resistance	N Package, Junction to Ambient (Note 6)	95			°C/W
		M Package, Junction to Ambient (<i>Note 6</i>)	105			

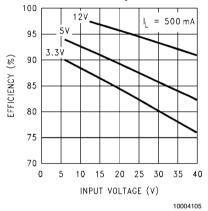
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.

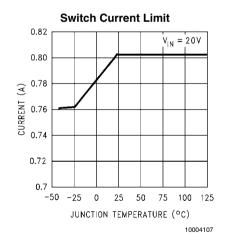
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

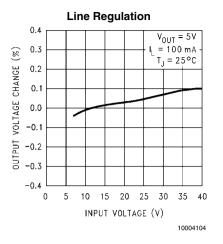
Note 3: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2674 is used as shown in Figures 2, 3 test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

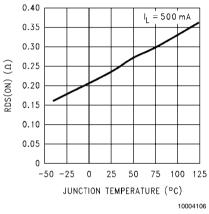
Note 4: Typical numbers are at 25°C and represent the most likely norm.

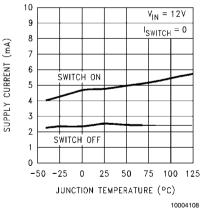
Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

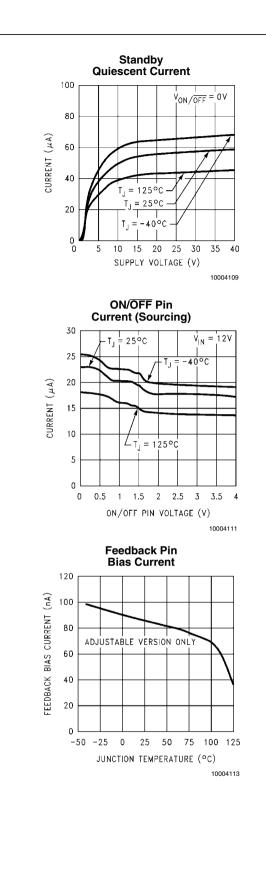

Note 6: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in *LM267X Made Simple* (version 6.0) software. The value θ_{J-A} for the LLP (LD) package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the LLP package, refer to Application Note AN-1187.

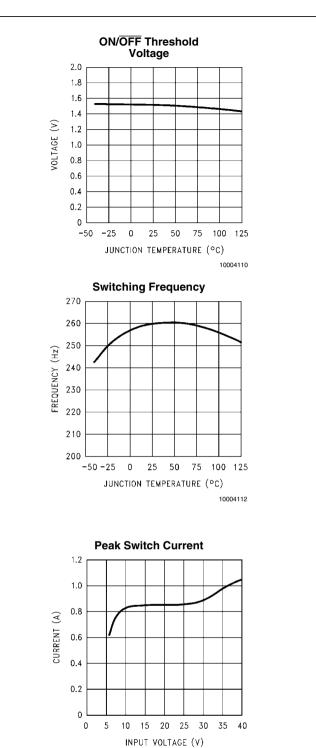

Note 7: The ON/\overline{OFF} pin is internally pulled up to 7V and can be left floating for always-on operation.

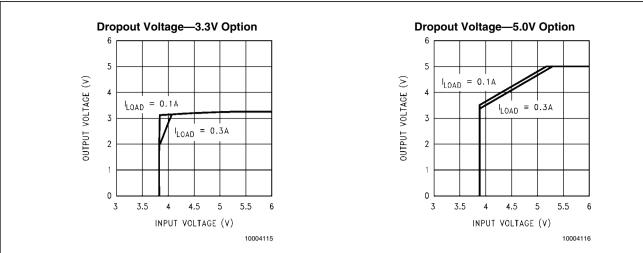

Typical Performance Characteristics

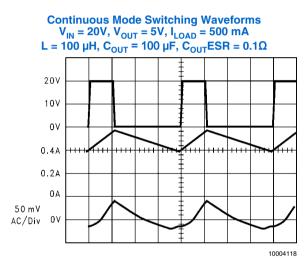






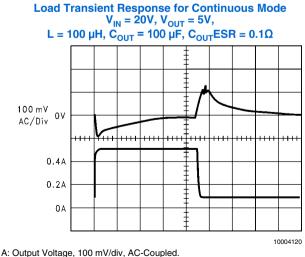






10004114

Typical Performance Characteristics (Circuit of Figure 2)



A: V_{SW} Pin Voltage, 10 V/div.

B: Inductor Current, 0.2 A/div

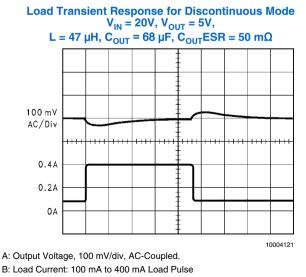
C: Output Ripple Voltage, 50 mV/div AC-Coupled

Horizontal Time Base: 1 µs/div

A: Output Voltage, 100 mV/div, AC-Coupled

B: Load Current: 100 mA to 500 mA Load Pulse

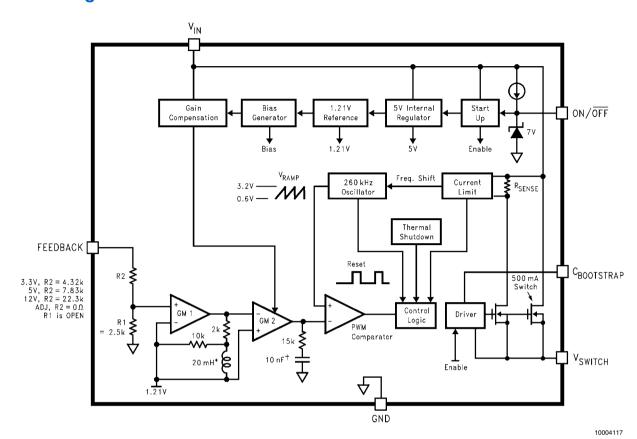
Horizontal Time Base: 50 µs/div


Discontinuous Mode Switching Waveforms $V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 300 \text{ mA}$ $L = 15 \mu\text{H}, C_{OUT} = 68 \mu\text{F} (2x), C_{OUT}\text{ESR} = 25 \text{ m}\Omega$ 20V 10V 0V 0.5A 0A 20 mV AC/Div

A: V_{SW} Pin Voltage, 10 V/div.

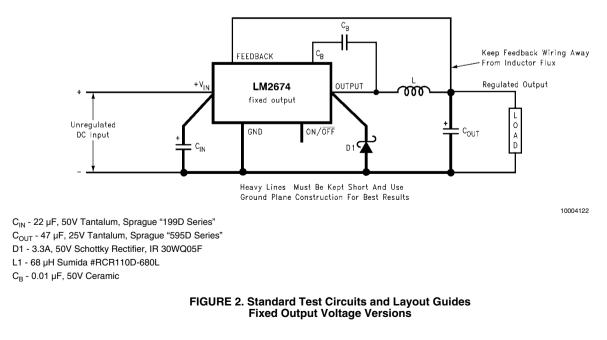
B: Inductor Current, 0.5 A/div

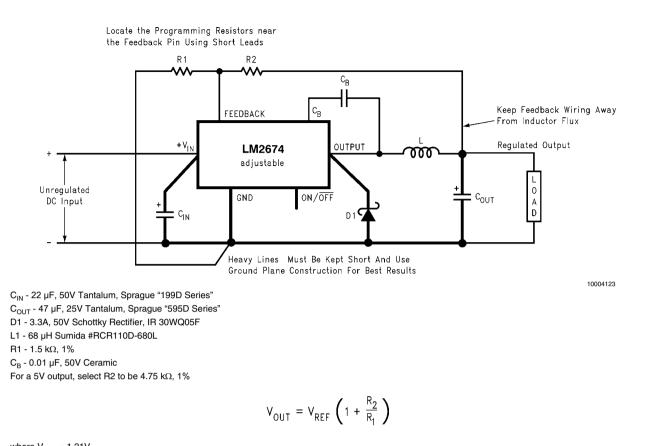
C: Output Ripple Voltage, 20 mV/div AC-Coupled


Horizontal Time Base: 1 µs/div

Horizontal Time Base: 200 µs/div

Block Diagram




* Active Inductor Patent Number 5,514,947

† Active Capacitor Patent Number 5,382,918

FIGURE 1.

Test Circuit and Layout Guidelines

where $V_{REF} = 1.21V$

$$R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$$

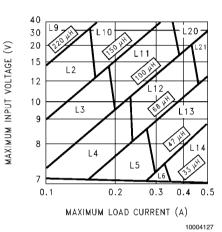
Use a 1% resistor for best stability.

FIGURE 3. Standard Test Circuits and Layout Guides Adjustable Output Voltage Versions

LM2674 Series Buck Regulator Design Procedure (Fixed Output)

	、
PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
To simplify the buck regulator design procedure, National	
Semiconductor is making available computer design software to be	
used with the SIMPLE SWITCHER line of switching regulators.	
LM267X Made Simple (version 6.0) is available on Windows® 3.1,	
NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage (3.3V, 5V, or 12V)	V _{OUT} = 5V
V _{IN} (max) = Maximum DC Input Voltage	$V_{IN}(max) = 12V$
I _{LOAD} (max) = Maximum Load Current	I _{LOAD} (max) = 500 mA
1. Inductor Selection (L1)	1. Inductor Selection (L1)
A. Select the correct inductor value selection guide from <i>Figure</i> 4, <i>Figure</i> 5 or <i>Figure</i> 6 (output voltages of 3.3V, 5V, or 12V respectively). For all other voltages, see the design procedure for the adjustable version.	A. Use the inductor selection guide for the 5V version shown in <i>Figure 5</i> .
B. From the inductor value selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code (LXX).	B. From the inductor value selection guide shown in <i>Figure 5</i> , the inductance region intersected by the 12V horizontal line and the 500mA vertical line is 47 μ H, and the inductor code is L13.
C. Select an appropriate inductor from the four manufacturer's part numbers listed in <i>Figure 8</i> . Each manufacturer makes a different style of inductor to allow flexibility in meeting various design requirements. Listed below are some of the differentiating characteristics of each manufacturer's inductors:	C. The inductance value required is 47 μ H. From the table in <i>Figure</i> 8, go to the L13 line and choose an inductor part number from any of the four manufacturers shown. (In most instances, both through hole and surface mount inductors are available.)
Schott: ferrite EP core inductors; these have very low leakage magnetic fields to reduce electro-magnetic interference (EMI) and are the lowest power loss inductors	
<i>Renco:</i> ferrite stick core inductors; benefits are typically lowest cost inductors and can withstand E•T and transient peak currents above rated value. Be aware that these inductors have an external magnetic field which may generate more EMI than other types of inductors.	
<i>Pulse:</i> powered iron toroid core inductors; these can also be low cost and can withstand larger than normal E•T and transient peak currents. Toroid inductors have low EMI.	
<i>Coilcraft:</i> ferrite drum core inductors; these are the smallest physical size inductors, available only as SMT components. Be aware that these inductors also generate EMI—but less than stick inductors.	
Complete specifications for these inductors are available from the respective manufacturers. A table listing the manufacturers' phone numbers is located in <i>Figure 9</i> .	
2. Output Capacitor Selection (C _{OUT})	2. Output Capacitor Selection (C _{OUT})
A. Select an output capacitor from the output capacitor table in <i>Figure 10</i> . Using the output voltage and the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor value and voltage rating.	A. Use the 5.0V section in the output capacitor table in <i>Figure 10</i> . Choose a capacitor value and voltage rating from the line that contains the inductance value of 47 μ H. The capacitance and voltage rating values corresponding to the 47 μ H inductor are the:

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
The capacitor list contains through-hole electrolytic capacitors from	
four different capacitor manufacturers and surface mount tantalum	68 μF/10V Sprague 594D Series.
capacitors from two different capacitor manufacturers. It is	100 µF/10V AVX TPS Series.
recommended that both the manufacturers and the manufacturer's	Through Hole:
series that are listed in the table be used. A table listing the	68 µF/10V Sanyo OS-CON SA Series.
manufacturers' phone numbers is located in <i>Figure 11</i> .	150 μF/35V Sanyo MV-GX Series.
	150 µF/35V Nichicon PL Series.
	150 µF/35V Panasonic HFQ Series.
3. Catch Diode Selection (D1)	3. Catch Diode Selection (D1)
A. In normal operation, the average current of the catch diode is	A. Refer to the table shown in <i>Figure 12</i> . In this example, a 1A,
the load current times the catch diode duty cycle, 1-D (D is the	20V Schottky diode will provide the best performance. If the circuit
	must withstand a continuous shorted output, a higher current
by the input voltage). The largest value of the catch diode average	Schottky diode is recommended.
current occurs at the maximum load current and maximum input	
voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average	
current. However, if the power supply design must withstand a	
continuous output short, the diode should have a current rating	
equal to the maximum current limit of the LM2674. The most	
stressful condition for this diode is a shorted output condition.	
B. The reverse voltage rating of the diode should be at least 1.25	
times the maximum input voltage.	
C. Because of their fast switching speed and low forward voltage	
drop, Schottky diodes provide the best performance and efficiency.	
This Schottky diode must be located close to the LM2674 using	
short leads and short printed circuit traces.	
4. Input Capacitor (C _{IN})	4. Input Capacitor (C _{IN})
A low ESR aluminum or tantalum bypass capacitor is needed	The important parameters for the input capacitor are the input
between the input pin and ground to prevent large voltage	voltage rating and the RMS current rating. With a maximum input
transients from appearing at the input. This capacitor should be	voltage of 12V, an aluminum electrolytic capacitor with a voltage
located close to the IC using short leads. In addition, the RMS current rating of the input capacitor should be selected to be at least	rating greater than 15V ($1.25 \times V_{IN}$) would be needed. The next higher capacitor voltage rating is 16V.
	The RMS current rating requirement for the input capacitor in a
be checked to assure that this current rating is not exceeded. The	buck regulator is approximately ½ the DC load current. In this
curves shown in <i>Figure 14</i> show typical RMS current ratings for	example, with a 500mA load, a capacitor with an RMS current rating
	of at least 250 mA is needed. The curves shown in <i>Figure 14</i> can
connection of two or more capacitors may be required to increase	be used to select an appropriate input capacitor. From the curves,
the total minimum RMS current rating to suit the application	locate the 16V line and note which capacitor values have RMS
requirements.	current ratings greater than 250 mA.
For an aluminum electrolytic capacitor, the voltage rating should be	For a through hole design, a 100 μ F/16V electrolytic capacitor
at least 1.25 times the maximum input voltage. Caution must be	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered.
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX,	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered. For surface mount designs, solid tantalum capacitors can be used,
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in series with the input supply line.	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge
at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in series with the	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating and voltage rating. In this example, checking <i>Figure</i>


٦

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
5. Boost Capacitor (C _B)	5. Boost Capacitor (C _B)
This capacitor develops the necessary voltage to turn the switch	For this application, and all applications, use a 0.01 $\mu\text{F},50\text{V}$
gate on fully. All applications should use a 0.01 $\mu\text{F},$ 50V ceramic	ceramic capacitor.
capacitor.	

Inductor Value Selection Guides

FIGURE 4. LM2674-3.3

FIGURE 5. LM2674-5.0

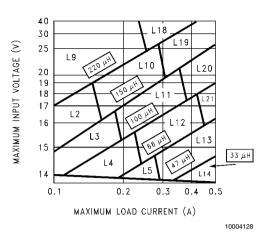
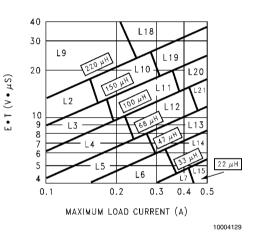



FIGURE 6. LM2674-12

FIGURE 7. LM2674-ADJ

Ind.	Inducta	Ourseast	Schott		Ren	0	Pulse E	ngineering	Coilcraft
Ref.	nce	Current (A)	Through	Surface	Through	Surface	Through	Surface	Surface
Desg.	(µH)	(~)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L2	150	0.21	67143920	67144290	RL-5470-4	RL1500-150	PE-53802	PE-53802-S	DO1608-154
L3	100	0.26	67143930	67144300	RL-5470-5	RL1500-100	PE-53803	PE-53803-S	DO1608-104
L4	68	0.32	67143940	67144310	RL-1284-68-43	RL1500-68	PE-53804	PE-53804-S	DO1608-683
L5	47	0.37	67148310	67148420	RL-1284-47-43	RL1500-47	PE-53805	PE-53805-S	DO1608-473
L6	33	0.44	67148320	67148430	RL-1284-33-43	RL1500-33	PE-53806	PE-53806-S	DO1608-333
L7	22	0.52	67148330	67148440	RL-1284-22-43	RL1500-22	PE-53807	PE-53807-S	DO1608-223
L9	220	0.32	67143960	67144330	RL-5470-3	RL1500-220	PE-53809	PE-53809-S	DO3308-224
L10	150	0.39	67143970	67144340	RL-5470-4	RL1500-150	PE-53810	PE-53810-S	DO3308-154
L11	100	0.48	67143980	67144350	RL-5470-5	RL1500-100	PE-53811	PE-53811-S	DO3308-104
L12	68	0.58	67143990	67144360	RL-5470-6	RL1500-68	PE-53812	PE-53812-S	DO3308-683
L13	47	0.70	67144000	67144380	RL-5470-7	RL1500-47	PE-53813	PE-53813-S	DO3308-473
L14	33	0.83	67148340	67148450	RL-1284-33-43	RL1500-33	PE-53814	PE-53814-S	DO3308-333
L15	22	0.99	67148350	67148460	RL-1284-22-43	RL1500-22	PE-53815	PE-53815-S	DO3308-223
L18	220	0.55	67144040	67144420	RL-5471-2	RL1500-220	PE-53818	PE-53818-S	DO3316-224
L19	150	0.66	67144050	67144430	RL-5471-3	RL1500-150	PE-53819	PE-53819-S	DO3316-154
L20	100	0.82	67144060	67144440	RL-5471-4	RL1500-100	PE-53820	PE-53820-S	DO3316-104
L21	68	0.99	67144070	67144450	RL-5471-5	RL1500-68	PE-53821	PE-53821-S	DO3316-683

FIGURE 8. Inductor Manufacturers' Part Numbers

Coilcraft Inc.	Phone	(800) 322-2645
	FAX	(708) 639-1469
Coilcraft Inc., Europe	Phone	+44 1236 730 595
	FAX	+44 1236 730 627
Pulse Engineering Inc.	Phone	(619) 674-8100
	FAX	(619) 674-8262
Pulse Engineering Inc.,	Phone	+353 93 24 107
Europe	FAX	+353 93 24 459
Renco Electronics Inc.	Phone	(800) 645-5828
	FAX	(516) 586-5562
Schott Corp.	Phone	(612) 475-1173
	FAX	(612) 475-1786

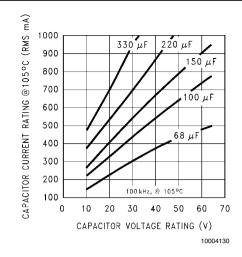
FIGURE 9. Inductor Manufacturers' Phone Numbers

		Output Capacitor					
Output	la di seta se s	Surface Mount		Through Hole			
Voltage		Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic
(V)	(μH)	594D Series	Series	SA Series	Series	PL Series	HFQ Series
		(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)
	22	120/6.3	100/10	100/10	330/35	330/35	330/35
	33	120/6.3	100/10	68/10	220/35	220/35	220/35
3.3	47	68/10	100/10	68/10	150/35	150/35	150/35
3.3	68	120/6.3	100/10	100/10	120/35	120/35	120/35
	100	120/6.3	100/10	100/10	120/35	120/35	120/35
	150	120/6.3	100/10	100/10	120/35	120/35	120/35
	22	100/16	100/10	100/10	330/35	330/35	330/35
	33	68/10	10010	68/10	220/35	220/35	220/35
5.0	47	68/10	100/10	68/10	150/35	150/35	150/35
5.0	68	100/16	100/10	100/10	120/35	120/35	120/35
	100	100/16	100/10	100/10	120/35	120/35	120/35
	150	100/16	100/10	100/10	120/35	120/35	120/35
	22	120/20	(2×) 68/20	68/20	330/35	330/35	330/35
12	33	68/25	68/20	68/20	220/35	220/35	220/35
	47	47/20	68/20	47/20	150/35	150/35	150/35
	68	47/20	68/20	47/20	120/35	120/35	120/35
	100	47/20	68/20	47/20	120/35	120/35	120/35
	150	47/20	68/20	47/20	120/35	120/35	120/35
	220	47/20	68/20	47/20	120/35	120/35	120/35

FIGURE 10. Output Capacitor Table

Nichicon Corp.	Phone	(847) 843-7500
	FAX	(847) 843-2798
Panasonic	Phone	(714) 373-7857
	FAX	(714) 373-7102
AVX Corp.	Phone	(845) 448-9411

	FAX	(845) 448-1943
Sprague/Vishay	Phone	(207) 324-4140
	FAX	(207) 324-7223
Sanyo Corp.	Phone	(619) 661-6322
	FAX	(619) 661-1055


FIGURE 11. Capacitor Manufacturers' Phone Numbers

	500mA	Diodes	3A Diodes	
V _R	Surface	Through	Surface	Through
	Mount	Hole	Mount	Hole
20V	SK12	1N5817	SK32	1N5820
	B120	SR102		SR302
30V	SK13	1N5818	SK33	1N5821
	B130	11DQ03	30WQ03F	31DQ03
	MBRS130	SR103		
40V	SK14	1N5819	SK34	1N5822
	B140	11DQ04	30BQ040	MBR340
	MBRS140	SR104	30WQ04F	31DQ04
	10BQ040		MBRS340	SR304
	10MQ040		MBRD340	
	15MQ040			
50V	SK15	MBR150	SK35	MBR350
	B150	11DQ05	30WQ05F	31DQ05
	10BQ050	SR105		SR305

FIGURE 12. Schottky Diode Selection Table

International Rectifier Corp.	Phone	(310) 322-3331
	FAX	(310) 322-3332
Motorola, Inc.	Phone	(800) 521-6274
	FAX	(602) 244-6609
General Instruments Corp.	Phone	(516) 847-3000
	FAX	(516) 847-3236
Diodes, Inc.	Phone	(805) 446-4800
	FAX	(805) 446-4850

FIGURE 13. Diode Manufacturers' Phone Numbers

Recommended	Voltage	
Application Voltage	Rating	
+85°C Rating		

6.3

10

20

25

3.3

5

10

12

AVX TPS

15	35
Sprague 59	4D
nmended	Voltage

Recommended	Voltage
Application Voltage	Rating
+85°C Rati	ng
2.5	4
3.3	6.3
5	10
8	16
12	20
18	25
24	35
29	50

FIGURE 15. Recommended Application Voltage for AVX TPS and Sprague 594D Tantalum Chip Capacitors Derated for 85°C.

LM2674 Series Buck Regulator Design Procedure (Adjustable Output)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
To simplify the buck regulator design procedure, National	
Semiconductor is making available computer design software to be	
used with the SIMPLE SWITCHER line of switching regulators.	
<i>LM267X Made Simple</i> (version 6.0) <i>is available for use on</i> Windows <i>3.1, NT, or 95 operating systems.</i>	
Given:	Given:
V _{OUT} = Regulated Output Voltage	$V_{OUT} = 20V$
V _{III} (max) = Maximum Input Voltage	$V_{\rm IN}(\rm max) = 28V$
	$I_{LOAD}(max) = 500 \text{ mA}$
I _{LOAD} (max) = Maximum Load Current F = Switching Frequency (<i>Fixed at a nominal 260 kHz</i>).	F = Switching Frequency (Fixed at a nominal 260 kHz).
1. Programming Output Voltage (Selecting R_1 and R_2 , as shown in <i>Figure 3</i>)	1. Programming Output Voltage (Selecting R_1 and R_2 , as shown in <i>Figure 3</i>)
Use the following formula to select the appropriate resistor values.	
	Select R_1 to be 1 k Ω , 1%. Solve for R_2 .
$V_{OUT} = V_{REF} \left(1 + \frac{\kappa_2}{R_1} \right)$	$R_{2} = R_{1} \left(\frac{V_{OUT}}{V_{REF}} - 1 \right) = 1 k\Omega \left(\frac{20V}{1.23V} - 1 \right)$
where $V_{REF} = 1.21V$	
Select a value for R_1 between 240 Ω and 1.5 k $\Omega.$ The lower resistor	
values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use 1% metal film resistors.)	$R_2 = 15.4 \text{ k}\Omega.$
$R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$	
2. Inductor Selection (L1)	2. Inductor Selection (L1)
A. Calculate the inductor Volt • microsecond constant E • T (V • µs), from the following formula:	A. Calculate the inductor Volt • microsecond constant (E • T),
$E \cdot T = (V_{IN(MAX)} - V_{OUT} - V_{SAT}) \cdot \frac{V_{OUT} + V_D}{V_{IN(MAX)} - V_{SAT} + V_D} \cdot \frac{1000}{260} (V \cdot \mu s)$	$E \cdot T = (28 - 20 - 0.25) \cdot \frac{20 + 0.5}{28 - 0.25 + 0.5} \cdot \frac{1000}{260} (V \cdot \mu s)$
	$E \cdot T = (7.75) \cdot \frac{20.5}{28.25} \cdot 3.85 (V \cdot \mu s) = 21.6 (V \cdot \mu s)$
where V_{SAT} =internal switch saturation voltage=0.25V and V_D = diode forward voltage drop = 0.5V	
B. Use the $E \bullet T$ value from the previous formula and match it with the $E \bullet T$ number on the vertical axis of the Inductor Value Selection	B. E • T = 21.6 (V • μs)
Guide shown in <i>Figure 7</i> .	(1 - (max)) = 500 mA
C. On the horizontal axis, select the maximum load current.	C. $I_{LOAD}(max) = 500 \text{ mA}$
D. Identify the inductance region intersected by the $E \bullet T$ value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).	inductance region intersected by the 21.6 (V \cdot µs) horizontal line and the 500mA vertical line is 100 µH, and the inductor code is L20
E. Select an appropriate inductor from the four manufacturer's part	-
numbers listed in <i>Figure 8</i> . For information on the different types of inductors, see the inductor selection in the fixed output voltage	-
design procedure.	
3. Output Capacitor Selection (C _{OUT})	3. Output Capacitor Selection (C _{OUT})
A. Select an output capacitor from the capacitor code selection guide in <i>Figure 16</i> . Using the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor code corresponding to the desired output voltage.	A. Use the appropriate row of the capacitor code selection guide in <i>Figure 16.</i> For this example, use the 15–20V row. The capacito code corresponding to an inductance of 100 μ H is C20.

4
ဖ
N
\geq

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
B. Select an appropriate capacitor value and voltage rating, using	B. From the output capacitor selection table in Figure 17, choose
the capacitor code, from the output capacitor selection table in	a capacitor value (and voltage rating) that intersects the capacitor
Figure 17. There are two solid tantalum (surface mount) capacitor	code(s) selected in section A, C20.
manufacturers and four electrolytic (through hole) capacitor	The capacitance and voltage rating values corresponding to the
manufacturers to choose from. It is recommended that both the	capacitor code C20 are the:
manufacturers and the manufacturer's series that are listed in the	Surface Mount:
table be used. A table listing the manufacturers' phone numbers is	33 μF/25V Sprague 594D Series.
located in Figure 11.	33 μF/25V AVX TPS Series.
	Through Hole:
	33 μF/25V Sanyo OS-CON SC Series.
	120 µF/35V Sanyo MV-GX Series.
	120 µF/35V Nichicon PL Series.
	120 µF/35V Panasonic HFQ Series.
	Other manufacturers or other types of capacitors may also be used
	provided the capacitor specifications (especially the 100 kHz ESF
	closely match the characteristics of the capacitors listed in the
	output capacitor table. Refer to the capacitor manufacturers' data
	sheet for this information.
4. Catch Diode Selection (D1)	4. Catch Diode Selection (D1)
A. In normal operation, the average current of the catch diode is	A. Refer to the table shown in <i>Figure 12</i> . Schottky diodes provid
the load current times the catch diode duty cycle, 1-D (D is the	the best performance, and in this example a 500mA, 40V Schottk
switch duty cycle, which is approximately V_{OUT}/V_{IN}). The largest	diode would be a good choice. If the circuit must withstand a
value of the catch diode average current occurs at the maximum	continuous shorted output, a higher current (at least 1.2A) Schottk
input voltage (minimum D). For normal operation, the catch diode	diode is recommended.
current rating must be at least 1.3 times greater than its maximum	
average current. However, if the power supply design must	
withstand a continuous output short, the diode should have a	

current rating greater than the maximum current limit of the LM2674. The most stressful condition for this diode is a shorted output condition.

B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.

C. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. The Schottky diode must be located close to the LM2674 using short leads and short printed circuit traces.

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
5. Input Capacitor (C _{IN})	5. Input Capacitor (C _{IN})
A low ESR aluminum or tantalum bypass capacitor is needed	The important parameters for the input capacitor are the input
between the input pin and ground to prevent large voltage	voltage rating and the RMS current rating. With a maximum input
transients from appearing at the input. This capacitor should be	voltage of 28V, an aluminum electrolytic capacitor with a voltage
located close to the IC using short leads. In addition, the RMS	rating of at least 35V (1.25 \times V _{IN}) would be needed.
current rating of the input capacitor should be selected to be at least	The RMS current rating requirement for the input capacitor in a
$\frac{1}{2}$ the DC load current. The capacitor manufacturer data sheet must	buck regulator is approximately 1/2 the DC load current. In this
be checked to assure that this current rating is not exceeded. The	example, with a 500mA load, a capacitor with an RMS current rating
curves shown in <i>Figure 14</i> show typical RMS current ratings for	of at least 250 mA is needed. The curves shown in <i>Figure 14</i> can
several different aluminum electrolytic capacitor values. A parallel	be used to select an appropriate input capacitor. From the curves,
connection of two or more capacitors may be required to increase	locate the 35V line and note which capacitor values have RMS
the total minimum RMS current rating to suit the application	current ratings greater than 250 mA.
requirements.	For a through hole design, a 68 μ F/35V electrolytic capacitor
For an aluminum electrolytic capacitor, the voltage rating should be	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or
at least 1.25 times the maximum input voltage. Caution must be	equivalent) would be adequate. Other types or other
exercised if solid tantalum capacitors are used. The tantalum	manufacturers' capacitors can be used provided the RMS ripple
capacitor voltage rating should be twice the maximum input	current ratings are adequate. Additionally, for a complete surface
voltage. The tables in <i>Figure 15</i> show the recommended	mount design, electrolytic capacitors such as the Sanyo CV-C or
application voltage for AVX TPS and Sprague 594D tantalum	CV-BS, and the Nichicon WF or UR and the NIC Components
capacitors. It is also recommended that they be surge current	NACZ series could be considered.
tested by the manufacturer. The TPS series available from AVX,	For surface mount designs, solid tantalum capacitors can be used,
and the 593D and 594D series from Sprague are all surge current	but caution must be exercised with regard to the capacitor surge
tested. Another approach to minimize the surge current stresses	current rating and voltage rating. In this example, checking <i>Figure</i>
on the input capacitor is to add a small inductor in series with the	15, and the Sprague 594D series datasheet, a Sprague 594D 15
input supply line.	μF, 50V capacitor is adequate.
Use caution when using ceramic capacitors for input bypassing,	
because it may cause severe ringing at the V _{IN} pin.	
6. Boost Capacitor (C _B)	6. Boost Capacitor (C _B)

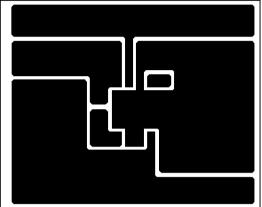
gate on fully. All applications should use a 0.01 $\mu\text{F},$ 50V ceramic capacitor.

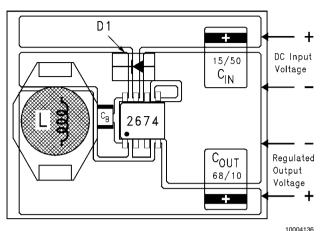
This capacitor develops the necessary voltage to turn the switch | For this application, and all applications, use a 0.01 μ F, 50V ceramic capacitor.

Case	Output	Inductance (µH)						
Style (Note 8)	Voltage (V)	22	33	47	68	100	150	220
SM and TH	1.21–2.50	_	_	_	_	C1	C2	C3
SM and TH	2.50–3.75	_	_	_	C1	C2	C3	C3
SM and TH	3.75–5.0	_	_	C4	C5	C6	C6	C6
SM and TH	5.0–6.25	_	C4	C7	C6	C6	C6	C6
SM and TH	6.25–7.5	C8	C4	C7	C6	C6	C6	C6
SM and TH	7.5–10.0	C9	C10	C11	C12	C13	C13	C13
SM and TH	10.0–12.5	C14	C11	C12	C12	C13	C13	C13
SM and TH	12.5–15.0	C15	C16	C17	C17	C17	C17	C17
SM and TH	15.0–20.0	C18	C19	C20	C20	C20	C20	C20
SM and TH	20.0–30.0	C21	C22	C22	C22	C22	C22	C22
TH	30.0–37.0	C23	C24	C24	C25	C25	C25	C25

Note 8: SM - Surface Mount, TH - Through Hole

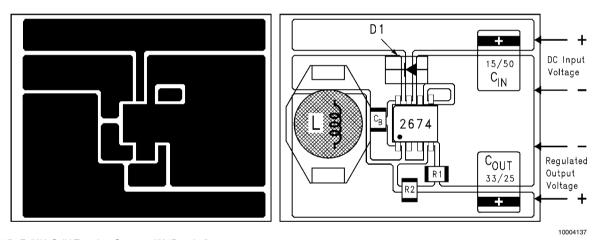
FIGURE 16. Capacitor Code Selection Guide


			Output Capacite	or			
Cap.	Surface Mount		Through Hole				
Ref.	Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic	
Desg.	594D Series	Series	SA Series	Series	PL Series	HFQ Series	
#	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	
C1	120/6.3	100/10	100/10	220/35	220/35	220/35	
C2	120/6.3	100/10	100/10	150/35	150/35	150/35	
C3	120/6.3	100/10	100/35	120/35	120/35	120/35	
C4	68/10	100/10	68/10	220/35	220/35	220/35	
C5	100/16	100/10	100/10	150/35	150/35	150/35	
C6	100/16	100/10	100/10	120/35	120/35	120/35	
C7	68/10	100/10	68/10	150/35	150/35	150/35	
C8	100/16	100/10	100/10	330/35	330/35	330/35	
C9	100/16	100/16	100/16	330/35	330/35	330/35	
C10	100/16	100/16	68/16	220/35	220/35	220/35	
C11	100/16	100/16	68/16	150/35	150/35	150/35	
C12	100/16	100/16	68/16	120/35	120/35	120/35	
C13	100/16	100/16	100/16	120/35	120/35	120/35	
C14	100/16	100/16	100/16	220/35	220/35	220/35	
C15	47/20	68/20	47/20	220/35	220/35	220/35	
C16	47/20	68/20	47/20	150/35	150/35	150/35	
C17	47/20	68/20	47/20	120/35	120/35	120/35	
C18	68/25	(2×) 33/25	47/25 (<i>Note 9</i>)	220/35	220/35	220/35	
C19	33/25	33/25	33/25 (Note 9)	150/35	150/35	150/35	
C20	33/25	33/25	33/25 (Note 9)	120/35	120/35	120/35	
C21	33/35	(2×) 22/25	(Note 10)	150/35	150/35	150/35	
C22	33/35	22/35	(Note 10)	120/35	120/35	120/35	
C23	(Note 10)	(Note 10)	(Note 10)	220/50	100/50	120/50	
C24	(Note 10)	(Note 10)	(Note 10)	150/50	100/50	120/50	
C25	(Note 10)	(Note 10)	(Note 10)	150/50	82/50	82/50	


Note 9: The SC series of Os-Con capacitors (others are SA series)

Note 10: The voltage ratings of the surface mount tantalum chip and Os-Con capacitors are too low to work at these voltages. FIGURE 17. Output Capacitor Selection Table

Application Information


TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXED OUTPUT (4X SIZE)

$$\begin{split} &C_{\text{IN}} - 15 \; \mu\text{F}, 25\text{V}, \text{Solid Tantalum Sprague, "594D series"} \\ &C_{\text{OUT}} - 68 \; \mu\text{F}, 10\text{V}, \text{Solid Tantalum Sprague, "594D series"} \\ &D1 - 1\text{A}, 40\text{V} \; \text{Schottky Rectifier}, \; \text{Surface Mount} \\ &L1 - 47 \; \mu\text{H}, \text{L13}, \; \text{Coilcraft DO3308} \end{split}$$

C_B - 0.01 μF, 50V, Ceramic TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (4X SIZE)

 C_{IN} - 15 $\mu F,$ 50V, Solid Tantalum Sprague, "594D series" C_{OUT} - 33 $\mu F,$ 25V, Solid Tantalum Sprague, "594D series"

D1 - 1A, 40V Schottky Rectifier, Surface Mount

L1 - 100 µH, L20, Coilcraft DO3316

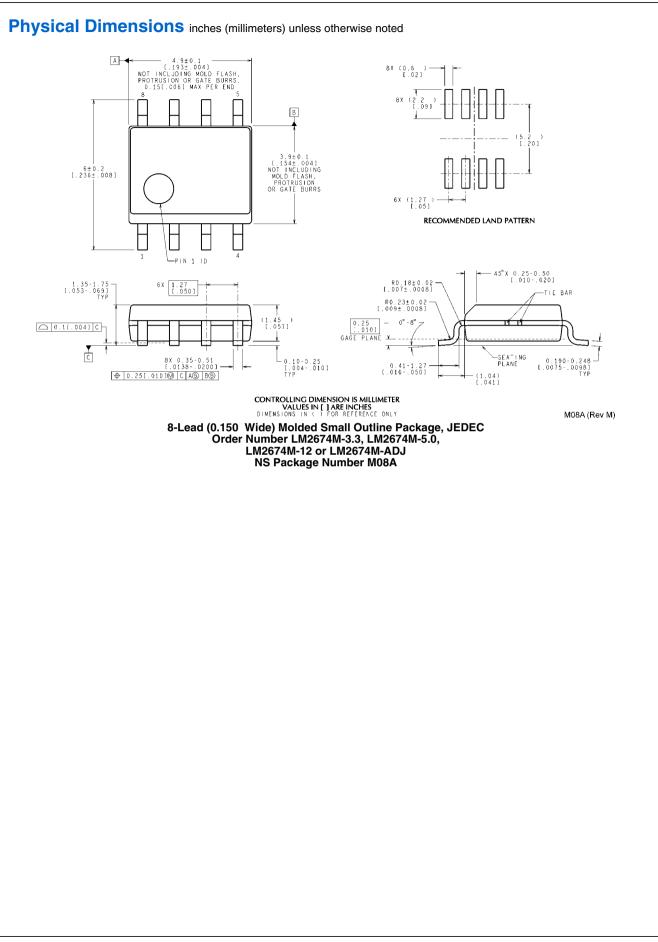
 $C_{\rm B}$ - 0.01 µF, 50V, Ceramic

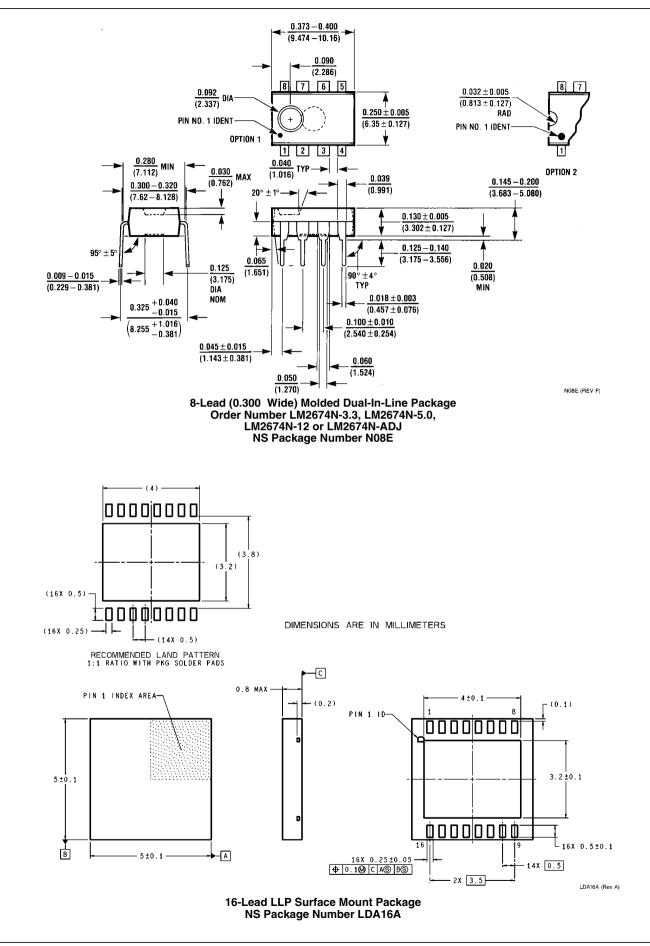
R1 - 1k, 1%

R2 - Use formula in Design Procedure

FIGURE 18. PC Board Layout

Layout is very important in switching regulator designs. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines (in *Figure 2* and *Figure 3*) should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.


If **open core inductors are used**, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path, and C_{OUT} wiring can cause problems.


When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

LLP Package Devices

The LM2674 is offered in the 16 lead LLP surface mount package to allow for increased power dissipation compared to the SO-8 and DIP.

The Die Attach Pad (DAP) can and should be connected to PCB Ground plane/island. For CAD and assembly guidelines refer to Application Note AN-1187 at http:// power.national.com.

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com