

CDCF5801

SCAS698F-SEPTEMBER 2003-REVISED APRIL 2006

CLOCK MULTIPLIER WITH DELAY CONTROL AND PHASE ALIGNMENT (Not Recommended for New Designs Use CDCF5801A as a Replacement)

FEATURES

- Low-Jitter Clock Multiplier: ×1, ×2, ×4, ×8
- Programmable Bidirectional Delay Steps of 1.3 mUI
- Output Frequency Range of 25 MHz to 280 MHz
- Input Frequency Range of 12.5 MHz to 240 MHz
- Low Jitter Generation
- Single-Ended REFCLK Input With Adjustable Trigger Level (Works With LVTTL, HSTL, and LVPECL)
- Differential/Single-Ended Output
- Output Can Drive LVPECL, LVDS, and LVTTL
- Three Power Operating Modes to Minimize Power
- Low Power Consumption (< 190 mW at 280 MHz/3.3 V)
- Packaged in a Shrink Small-Outline Package (DBQ)
- No External Components Required for PLL
- Spread Spectrum Clock Tracking Ability to Reduce EMI (SSC)

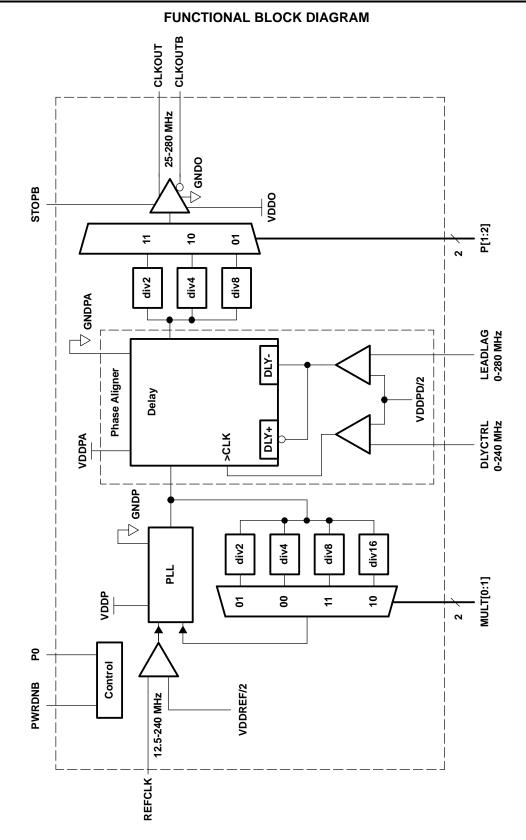
DESCRIPTION

The CDCF5801 provides clock multiplication from a reference clock (REFCLK) signal with the unique capability to delay or advance the CLKOUT/CLKOUTB with steps of only 1.3 mUI through a phase aligner. For every rising edge on the DLYCTRL pin the CLKOUT is delayed by a 1.3-mUI step size as long as the LEADLAG input detects a low signal at the time of the DLYCTRL rising edge. Similarly for every rising edge on the DLYCTRL pin the CLKOUT is advanced by a 1.3-mUI step size as long as the LEADLAG pin is high during the transition. This unique capability allows the device to phase align (zero delay) between CLKOUT/CLKOUTB and any one other CLK in the system by feeding the clocks that need to be aligned to the DLYCTRL and the LEADLAG pins. Also it provides the capability to program a fixed delay by providing the proper number of edges on the DLYCTRL pin, while strapping the LEADLAG pin to dc high or low. Further possible applications are:


- Aligning the rising edge of the output clock signal to the input clock rising edge
- Avoiding PLL instability in applications that require very long PLL feedback lines
- Isolation of jitter and digital switching noise
- Limitation of jitter in systems with good ppm frequency stability

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

APPLICATIONS


- Video Graphics
- Gaming Products
- Datacom
- Telecom
- Noise Cancellation Created by FPGAs

The CDCF5801 provides clock multiplication and division from a reference clock (REFCLK) signal. The device is optimized to have extremely low jitter impact from input to output. The predivider pins MULT[0:1] and post-divider pins P[0:2] provide selection for frequency multiplication and division ratios, generating CLKOUT/CLOUTKB frequencies ranging from 25 MHz to 280 MHz with clock input references (REFCLK) ranging from 12.5 MHz to 240 MHz. See Table 1 for detailed frequency support. The selection of pins MULT[0:1] and P[1:2] determines the multiplication value of 1, 2, 4, or 8. The CDCF5801 offers several power-down/ high-impedance modes, selectable by pins P0, STOPB and PWRDN. Another unique capability of the CDCF5801 is the high sensitivity and wide common-mode range of the clock-input pin REFCLK by varying the voltage on the VDDREF pin. The clock signal outputs CLKOUT and CLKOUTB can be used independently to generate single-ended clock signals. The CLKOUT/CLKOUTB outputs can also be combined to generate a differential output signal suitable for LVDS, LVPECL, or HSTL/SSTL signaling. The CDCF5801 is characterized for operation over free-air temperatures of -40°C to 85°C.

TERMINAL FUNCTIONS

TERMINAL			
NAME	NO.	I/O	DESCRIPTION
CLKOUT 2018 CLKOUTB		0	Output CLK signal (low-noise CMOS) Complementary output CLK signal (low-noise CMOS)
DLYCTRL	7	I	Every rising edge on this pin delays/advances the CLKOUT/CLKOUTB signal by 1/768 th of the CLKOUT/CLKOUTB period (1.3 mUI). (E.g., for a 90-degree delay or advancement one needs to provide 192 rising edges). See Table 3.
GND	5		GND for VDDREF and VDDPD
GNDO	17, 21		GND for the output pins (CLKOUT, CLKOUTB)
GNDP	4		GND for the PLL
GNDPA	8		GND for phase aligner, digital logic, and inputs P[0:2], MULT[0:1], STOPB, PWRDNB
LEADLAG	6	I	Controls whether the output CLK is delayed or advanced relative to REFCLK. See Table 3.
MULT0	15	I	PLL multiplication factor select. See Table 1.
MULT1	14		MULT[0:1] = 10: ×16
			MULT[0:1] = 11: ×8
			MULT[0:1] = 00: ×4
			MULT[0:1] = 01: ×2
NC	19		Not connected; leave pin floating or tied to GND.
P0	24	I	Mode control pins (see Table 1)
			0 - Normal operation
			1 - High-Z outputs and other special settings
P1	23	I	Post divider control (see Table 1)
			P[1:2] = 11: div2
			P[1:2] = 10: div4
P2	13		P[1:2] = 01: div8
PWRDNB	12	I	Active-low power-down state. CLKOUT/CLKOUTB goes low, See Table 2).
			0 - IC in power down
			1 - Normal operation
REFCLK	2	I	Reference input clock
STOPB	11	I	Active low output disabler, PLL and PA still running, CLKOUT and CLKOUTB goes to a dc value as listed in Table 2.
			0 - Outputs disabled
			1 - Normal operation
VDDO	16, 22		VDD for the output pin (CLKOUT, CLKOUTB) and power down circuit
VDDP	3		VDD for PLL and input buffer
VDDPA	9		VDD for phase aligner, digital logic, and inputs P[0:2], MULT[0:1], and STOPB
VDDPD	10		Reference voltage for inputs LEADLAG and DLYCTRL
VDDREF	1		Reference voltage for REFCLK

Table 1. Input-to-Output Settings

SCAS698F-SEPTEMBER 2003-REVISED APRIL 2006

INPUT-TO-OUTPUT MULTIPLICATION-RATIO	FREQU			OUTPUT FREQUENCY (MHz)		VIDER	POS	ST DIV	IDER	NOTE
	FROM	то	FROM	то	MULT0	MULT1	P0	P1	P2	
8	12.5	35	100	280	1	0		1	1	
4	12.5	39	50	156	1	0		1	0	
4	25	70	100	280	1	1	1	1	1	
	12.5	39	25	78	1	0		0	1	
2	25	78	50	156	1	1	0	1	0	Normal operation ⁽¹⁾
	50	140	100	280	0	0		1	1	
	25	78	25	78	1	1		0	1	
1	50	156	50	156	0	0		1	0	
	100	240	100	240	0	1		1	1	
		С	LKOUT high-i	impedance	V	X		0	0	
	CLO				X	X		0	0	
			CLKC	OUT = high	V	х		0		
			CLKOUTB = high		X	X	1	0	1	Special mode of operation
			CLK	KOUT = P2	v	v	1	4	v	
			CLKC	$OUTB = \overline{P2}$	Х	X		1	Х	

(1) There is some overlapping of the input frequency ranges for multiplication ratios of 1, 2, and 4. For example, an input frequency of 30 MHz for a multiplication ratio of four falls within both the 12.5 to 39-MHz range and the 25 to 70-MHz range. For best device operation in a case such as this, always select the input frequency range nearer to the top of the table.

PLL DIVIDER/MULITPLIER SELECTION

Table 2. Power Down Modes

STATE	PWRDNB	STOPB	CLKOUT and CLKOUTB
Power down	0	Х	GNDO
Clock stop	1	0	V _O , STOP
Normal	1	1	See Table 1

Table 3. Programmable Delay and Phase Alignment

DLYCTR	NOTE	LEADLAG	CLKOUT and CLKOUTB
Each rising edge+	For every 32 edges, there are one or two edges for which the phase aligner does not update the phase. Therefore, CLKOUT	HI	Advanced by one step: step size: $1/768$ of the CLKOUT period (1.3 mUI) at P[1:2] = 11 1/1536 of the CLKOUT period (0.65 mUI) at P[1:2] = 10 1/3072 of the CLKOUT period (0.325 mUI) at P[1:2] = 01
Each rising edge+	phase is not updated for every 32 nd edge. The frequency of the DLYCTRL pin should always be equal to or less than the frequency of the LEADLAG pin.	LO	Delayed by one step: step size: $1/768$ of the CLKOUT period (1.3 mUI) at P[1:2] = 11 1/1536 of the CLKOUT period (0.65 mUI) at P[1:2] = 10 1/3072 of the CLKOUT period (0.325 mUI) at P[1:2] = 01

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted)⁽¹⁾

V _{DDx} ⁽²⁾	Supply voltage range	-0.5 V to 4 V
	Voltage range at any output terminal	-0.5 V to V _{DD} + 0.5 V
	Voltage range at any input terminal	-0.5 V to V _{DD} + 0.5 V
T _{stg}	Storage temperature range	-65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

 Stresses beyond those listed under, absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under, recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the GND terminals.

POWER DISSIPATION RATING TABLE

PACKA GE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE $T_A = 25^{\circ}C$	T _A = 85°C POWER RATING
DBQ	830 mW	8.3 mW/°C	332 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
VDDP, VDDPA, VDDO	Supply voltage	3	3.3	3.6	V
V _{IH (CMOS)}	High-level input voltage	0.7 VDD			V
V _{IL (CMOS)}	Low-level input voltage			0.3 VDD	V
V _{IL} (DLYCTRL, LEADLAG)	Input signal low voltage			<u>VDDPD</u> – 0.2	V
V _{IH} (DLYCTRL, LEADLAG)	Input signal high voltage	$\frac{\text{VDDPD}}{2} + 0.2$			V
(VDDPD)	Input reference voltage for DLYCNTRL and LEADLAG	1.2		VDD	V
I _{ОН}	High-level output current			-16	mA
I _{OL}	Low-level output current			16	mA
(VDDREF) (see Application section)	Input reference voltage for REFCLK	1.2		VDD	V
V _{IL} (see Application section)	REFCLK input low voltage		Ň	<u>/DDREF</u> – 0.2	V
V_{IH} (see Application section)	REFCLK input high voltage	$\frac{\text{VDDREF}}{2} + 0.2$			V
T _A	Operating free-air temperature	-40		85	°C

TIMING REQUIREMENTS

	PARAMETER	MIN	MAX	UNIT
F_{mod}	Input frequency of modulation, (if driven by SSC CLKIN)		33	kHz
	Modulation index, nonlinear maximum 0.5%		0.6%	
SR	Input slew rate	1	4	V/ns
	Input duty cycle on REFCLK	40%	60%	
	Input frequency on REFCLK	12.5	240	MHz
	Output frequency on CLKOUT and CLKOUTB	25	280	MHz
	Allowable frequency on DLYCTRL		240	MHz

TIMING REQUIREMENTS (continued)

PARAMETER	MIN	MAX	UNIT
Allowable frequency on LEADLAG		280	MHz
Allowable duty cycle on DLYCTRL and LEADLAG pins	25%	75%	

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMET	ER	TEST CON	IDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V _{O(STOP)}	Output voltage	e during Clkstop mode	See Figure 1		1.1		2	V
V _{O(X)}	Output crossir	g-point voltage	See Figure 1 and	Figure 4	$\frac{\text{VDDO}}{2} - 0.2$		$\frac{\text{VDDO}}{2} + 0.2$	V
Vo	Output voltage	e swing (V _{OH} - V _{OL})	See Figure 1		1.7		2.9	V
V _{IK}	Input clamp vo	oltage	$V_{DD} = 3 V,$	I _I = -18 mA			-1.2	V
M	High-level out	autivoltago	$V_{DD} = 3 \text{ to } 3.6 \text{ V},$	See Figure 1	2	2.5		V
V _{OH}	Figh-level out	out vollage	$V_{DD} = 3 V,$	I _{OH} = -16 mA	2.2			v
V _{OL}	Low-level outp	nut voltage	V_{DD} = 3 to 3.6 V,	See Figure 1		0.4	0.6	V
VOL		our voltage	$V_{DD} = 3 V,$	I _{OH} = 16 mA			0.5	v
			$V_{DD} = 3.135 V,$		-32	-52	$\begin{array}{r} 2\\ \hline \frac{\text{VDDO}}{2} + 0.2\\ \hline 2.9\\ \hline 2.9\\ \hline .5\\ \hline 0.5\\ \hline 0.5$	
I _{OH}	High-level out	out current	$V_{DD} = 3.3 V,$			-51		mA
			V _{DD} = 3.465 V,	V _O = 3.135 V		-14.5	$\begin{array}{c c} 2 \\ \hline \\$	
				V _O = 1.95 V	43	61.5	$\frac{VDDO}{2} + 0.2$ 2.9 -1.2 5 4 0.6 0.5 2 1 5 5 5 4 0 1 5 5 5 40 10 10 100 100 100 5 5 5 0 7 35 5 0 0.5 2 3 4 4	
I _{OL}	Low-level outp	out current	$V_{DD} = 3.3 V,$	V _O = 1.65 V		65		mA
			$V_{DD} = 3.465 V,$	$V_0 = 0.4 V$		25.5	40	
I _{OZ}	High-impedan	ce-state output current	P0 = 1,	P1 = P2 = 0			±10	μΑ
I _{OZ(STOP)}	High-impedan during Clk Sto	ce-state output current p	Stop = 0,	$V_{O} = GND \text{ or } V_{DD}$			±100	μΑ
I _{OZ(PD)}	High-impedan in power-dowr	ce-state output current	PWRDNB = 0,	$V_{O} = GND \text{ or } V_{DD}$	-10		100	μA
I _{IH}		REFCLK; STOPB;	V _{DD} = 3.6 V,	$V_{I} = V_{DD}$			10	μA
I _{IL}	High-level input current	PWRDNB; P[0:2]; MULT[0:1]; DLYCTRL; LEADLAG	V _{DD} = 3.6 V,	V ₁ =0			-10	μA
	Output	High state	R _I at I _O -14.5 mA to	o -16.5 mA	15	35	50	
Z _O	impedance (single ended)	Low state	R _I at I _O 14.5 mA to	o 16.5 mA	10	17	35	Ω
	Reference			PWRDNB = 0			50	μA
I _{REF}	current	V _{DD} REF; VDDPD	V _{DD} = 3.6 V	PWRDNB = 1			0.5	mA
CI	Input capacita	nce	$V_I = V_{DD}$ or GND			2		pF
Co	Output capaci	tance	$V_{O} = GND \text{ or } V_{DD}$			3		pF
I _{DD} (PD)	Supply curren	t in power-down state	REFCLK = 0 MHz PWRDNB = 0; ST				4	mA
I _{DD} (CLKSTOP)	Supply current	t in CLK stop state	BUSCLK configure	ed for 280 MHz			44	mA
I _{DD} (NORMAL)	Supply current mode)	t (normal operation	BUSCLK 280 MH: P[0:2] = 011; Load	z, MULT[0:1] = 10; d , See Figure 1			75	mA

(1) V_{DD} refers to any of the following; VDDP, VDDREF, VDDO, VDDPD, and VDDPA (2) All typical values are at V_{DD} = 3.3 V, T_A = 25° C.

JITTER SPECIFICATION

over recommended free-air temperature range and $V_{\rm CC}$ range (unless otherwise noted)

			TEST (CONDITIONS				
	PARAMETER	REFCLK (MHz)	CLKOUT (MHz)	MULT[0:1]	P[0:2]	NOTES	TYP (ps)	MAX (ps)
	Period rms (1-sigma jitter, full frequency band)	25	25	11	001		20	48
	Period p-p						120	225
	Cycle to cycle +						70	165
	Cycle to cycle -						70	165
	RMS phase jitter (accumulated, 100 kHz-12.5 MHz)						80	160
	Period rms (1-sigma jitter, full frequency band)	50	50	11	001		7	15
	Period p-p						37	75
	Cycle to cycle +						27	55
	Cycle to cycle -						27	55
	RMS phase jitter (accumulated, 100 kHz-25 MHz)					Phase aligner running	27	65
	Period rms (1-sigma jitter, full frequency band)	100	100	00	010	(CLKOUT tight to LEADLAG; REFCLK tight to DLYCTRL). All typical values are at VDD = 3.3 V, T _A = 25° C.	5	14
	Period p-p						30	65
(jitter)	Cycle to cycle +						20 120 70 70 80 7 37 27 27 27 5	55
	Cycle to cycle -						24	55
	RMS phase jitter (accumulated, 100 kHz-40 MHz)						35	65
	Period rms (1-sigma jitter, full frequency band)	156	156	00	010		4	8
	Period p-p					$T_{\rm A} = 25$ C.	20	40
	Cycle to cycle +						17	40
	Cycle to cycle -						17	40
	RMS phase jitter (accumulated, 100 kHz-40 MHz)						15	35
	Period rms (1-sigma jitter, full frequency band)	200	200	01	011		8	15
	Period p-p						38	60
	Cycle to cycle +						20 120 70 70 80 7 37 27 27 27 27 27 27 27 27 27 30 24 24 35 4 20 17 17 15 8 38 5 35	55
	Cycle to cycle -							55
	RMS phase jitter (accumulated, 100 kHz-40 MHz)							60

JITTER SPECIFICATION (continued)

over recommended free-air temperature range and V_{CC} range (unless otherwise noted)

			TEST (CONDITIONS				
	PARAMETER	REFCLK (MHz)	CLKOUT (MHz)	MULT[0:1]	P[0:2]	NOTES	15 34 20 20 3 15 13 6 35 25	MAX (ps)
	Period rms (1-sigma jitter, full frequency band)	25	200	10	011		4	11
	Period p-p					-	20	48
	Cycle to cycle +					-	16	45
	Cycle to cycle -						4 20 16 16 4 22 15 15 4 18 15 15 6 34 20 20 3 15 13 13 13 6 35	45
	Period rms (1-sigma jitter, full frequency band)	25	100	10	010	NOTES Phase aligner not running (LEADLAG = 0, DLYCTRL = 0). All typical values are at VDD = 3.3 V, T _A = 25° C.	4	11
	Period p-p						22	55
	Cycle to cycle +					-	15	45
	Cycle to cycle -					-	15	45
	Period rms (1-sigma jitter, full frequency band)	rms (1-sigma jitter, full 70 280 11 011 Ph lcy band) p-p		4	11			
	Period p-p						18	48
	Cycle to cycle +						15	45
	Cycle to cycle -						15	45
t _(jitter)	Period rms (1-sigma jitter, full frequency band)	25	50	10	001	typical	4 20 16 16 4 22 15 15 4 18 15 4 18 15 6 34 20 20 3 15 13 13 6 35 25	16
	Period p-p					at	34	75
	Cycle to cycle +					V, $T_{\Delta} =$	4 20 16 16 4 22 15 15 4 15 4 15 6 34 20 20 3 15 13 13 6 35 25	65
	Cycle to cycle -						20	65
	Period rms (1-sigma jitter, full frequency band)	78	156	11	010		3	11
	Period p-p					-	15	44
	Cycle to cycle +						13	40
	Cycle to cycle -						13	40
	Period rms (1-sigma jitter, full frequency band)	62.5	125	00	011		6	20
	Period p-p						35	80
	Cycle to cycle +						20 16 16 4 22 15 15 4 18 15 15 6 34 20 20 20 3 15 13 13 13 6 35 25	75
	Cycle to cycle -						25	75

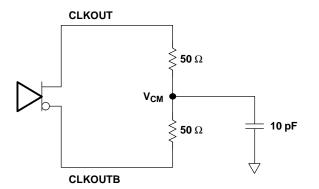
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

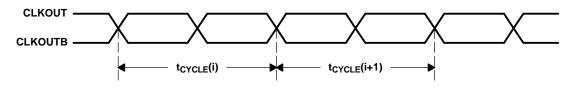
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(DC)	Output duty cycle over 1000 cycles	See Figure 3	42%		58%	
t _r , t _f	Output rise and fall times (measured at 20%-80% of output voltage	See Figure 5	150	250	350	ps

STATE TRANSITION LATENCY SPECIFICATIONS

	PARAMETER	FROM	то	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
t _(powerup)	Delay time, PWRDNB [↑] to CLKOUT / CLKOUTB settled	Describer	Normal	See Figure 6			3	
	Delay time, PWRDNB [↑] to internal PLL and clock are on and settled	Power down					3	ms

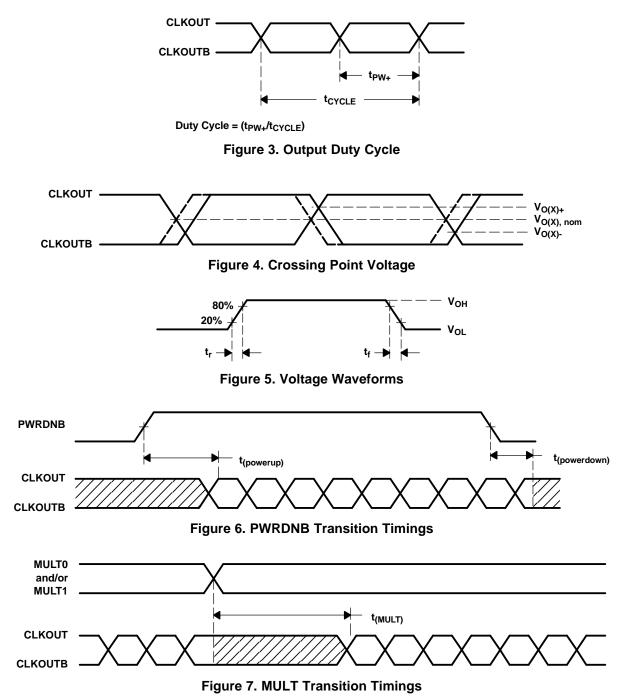


STATE TRANSITION LATENCY SPECIFICATIONS (continued)


	PARAMETER	FROM	то	TEST CONDITION	MIN	TYP	МАХ	UNIT
+	Delay time, power up to CLKOUT output settled	N	Normal	See Figure 6			3	ms
t _(VDDpowerup)	Delay time, power up to internal PLL and clock are on and settled	V _{DD}	Normai	See Figure o			3	1115
t _(MULT)	MULT0 and MULT1 change to CLKOUT output resettled	Normal	Normal	See Figure 7			1	ms
t _(CLKON)	STOPB [↑] to CLKOUT glitch-free clock edges	CLK stop	Normal	See Figure 8			10	ns
t _(CLKSETL)	STOPB [↑] to CLKOUT output settled to within 50 ps of the phase before STOPB was disabled	CLK stop	Normal	See Figure 8			20	cycles
t _(CLKOFF)	STOPB \downarrow to CLKOUT output disabled	Normal	CLK stop	See Figure 8			5	ns
t _(powerdown)	Delay time, PWRDNB↓ to the device in the power-down mode	Normal	Power down	See Figure 6			1	ms
t _(STOP)	Maximum time in CLKSTOP (STOPB = 0) before reentering normal mode (STOPB = 1)	STOPB	Normal	See Figure 8	100			μs
t _(ON)	Minimum time in normal mode (STOPB = 1) before reentering CLKSTOP (STOPB = 0)	Normal	CLK stop	See Figure 8	100			ms

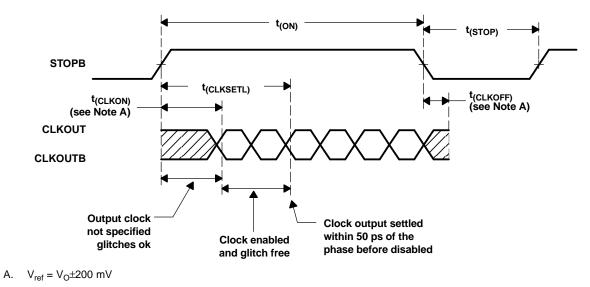
PARAMETER MEASUREMENT INFORMATION

TESTING CONDITIONS



 $\label{eq:cycle-to-Cycle Jitter (t_{(jitter)}) = \ |\ t_{CYCLE}(i) - t_{CYCLE}(i+1) \ | \ over \ 1000 \ consecutive \ cycles$

Figure 2. Cycle-to-Cycle Jitter



APPLICATION INFORMATION

APPLICATION EXAMPLE

The following figure shows an example of using the CDCF5801 as a phase aligner de-skewing the unknown buffer delay of the two CDCV304s in the circuit. This circuitry would not be possible with a simple PLL because the feedback of the PLL would have the second CDCV304 in the loop, causing instability of the PLL due to a long delay.

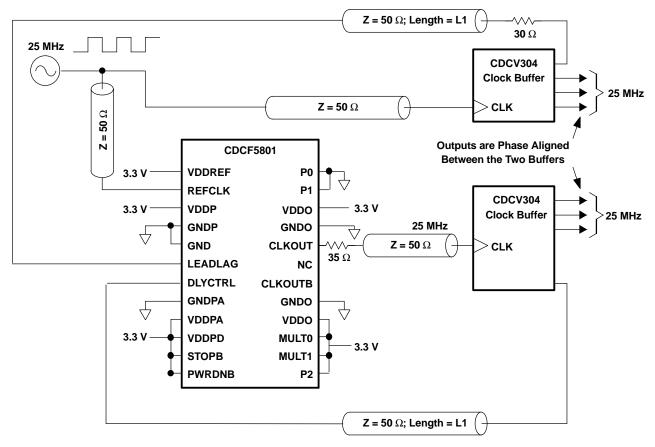
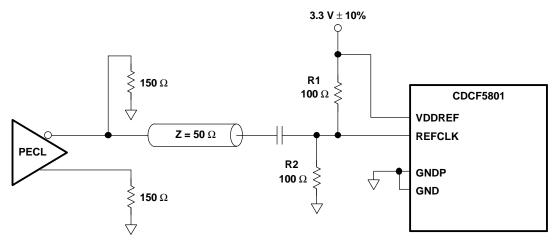


Figure 9. Application Example

NOTE:

If an active element (microcontroller, ASIC, DSP< FPYA, DSP, etc.) is used in the CDCF5801 CLKOUT to DLYCTRL feedback loop, see application report SCAA075.


SELECTING VDDREF

Generally, VDDREF can be set to any value between 1.2 V and VDD. The setting of VDDREF directly influences the trigger voltage of the input. Special care must be taken when using small signal swings to drive the CVDCF5801 input (e.g., PECL). It is recommended to connect VDDREF directly to VDD, ac-couple the REFCLK input, and rebias the signal.

The following circuit is recommended to drive the CDCF5801 from a differential clock signal like PECL.

APPLICATION INFORMATION (continued)

A. NOTE: If more signal swing is required and an unterminated transmission is on option, then R1 and R2 can both be replaced with $10-k\Omega$ resistors.

Revision History

DATE	REV	PAGE	SECTION	DESCRIPTION
29 JUL 05	Е	13	Application Example	Changed first paragraph and changed P2 connection in Figure 9
18 DEC 04	D	-	_	Unknown
17 FEB 04	С	-	-	Unknown
15 OCT 03	В	-	_	Unknown
9 OCT 03	А	-	-	Unknown
16 SEP 03	*	-	-	Original version

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CDCF5801DBQ	NRND	SSOP	DBQ	24	50	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	
CDCF5801DBQR	NRND	SSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	
CDCF5801DBQRG4	NRND	SSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

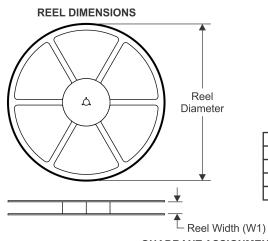
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

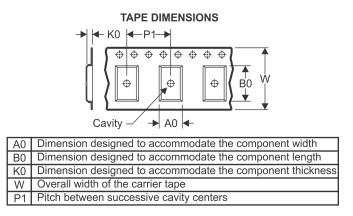
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

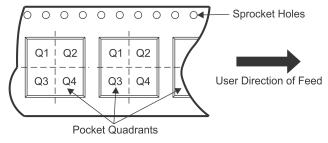
www.ti.com

6-Feb-2020


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

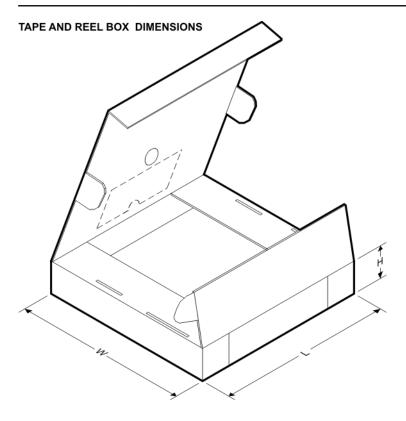
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

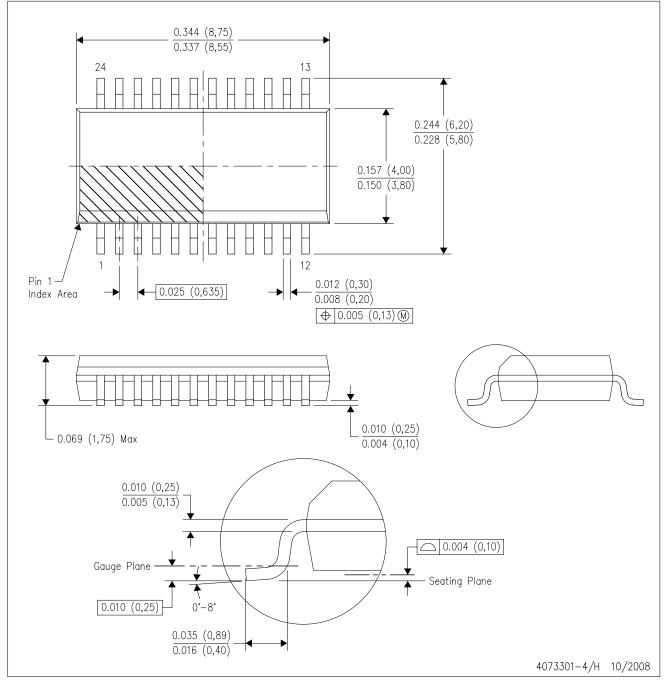

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCF5801DBQR	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Sep-2019

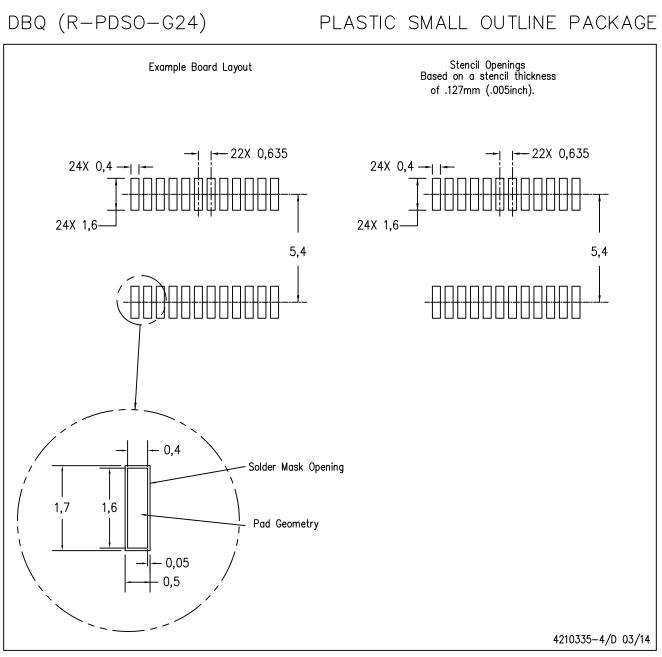


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCF5801DBQR	SSOP	DBQ	24	2500	367.0	367.0	38.0

DBQ (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AE.

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated