National Semiconductor is now part of

 Texas Instruments.
Search http://www.ti.com/ for the latest technical

 information and details on our current products and services.
LP39542

Advanced Lighting Management Unit

General Description

LP39542 is an advanced lighting management unit for handheld devices. It drives any phone lights including display backlights, RGB, keypad and camera flash LEDs. The boost DC-DC converter drives high current loads with high efficiency. White LED backlight drivers are high efficiency low voltage structures with excellent matching and automatic fade in/ fade out function. The stand-alone command based RGB controller is feature rich and easy to configure. Built-in audio synchronization feature allows user to synchronize the color LEDs to audio input. Integrated high current driver can drive camera flash LED or motor/vibra. Internal ADC can be used for ambient light or temperature sensing. The flexible ${ }^{2} \mathrm{C}$ interface allows easy control of LP39542. Small micro SMD package together with minimum number of external components is a best fit for handheld devices.

Features

- Audio synchronization for color/RGB LEDs
- Command based PWM controlled RGB LED drivers
- Programmable ON/OFF blinking sequences for RGB LED
- High current driver for flash LED with built-in timing and safety feature.
- 4+2 or 6 low voltage constant current white LED drivers with programmable 8 -bit adjustment ($0 . . .25 \mathrm{~mA} / \mathrm{LED}$)
- High efficiency Boost DC-DC converter
- I2C compatible interface
- Possibility for external PWM dimming control
- Possibility for clock synchronization for RGB timing
- Ambient light and temperature sensing possibility

■ Small package - microSMD-36, $3.0 \times 3.0 \times 0.6 \mathrm{~mm}$

Applications

- Cellular Phones
- PDAs, MP3 players

Typical Applications

Connection Diagrams and Package Mark Information

CONNECTION DIAGRAMS
MicroSMD-36 Package, $3.0 \times 3.0 \times 0.6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch NS Package Number TLA36AAA or MicroSMDxt- 36 Package, $3.0 \times 3.0 \times 0.65 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch NS Package Number RLA36AAA

30008503

PACKAGE MARK

30008505

Ordering Information

Order Number	Package Marking	Supplied As	Spec/Flow
LP39542TL	D58B	TNR 250	NoPb
LP39542TLX	D58B	TNR 1000	NoPb
LP39542RL	D58B	TNR 250	NoPb
LP39542RLX	D58B	TNR 1000	NoPb

Pin Descriptions

Pin \#	Name	Type	
6F	SW	Output	Boost Converter Power Switch
6E	FB	Input	Boost Converter Feedback
6D	FLASH	Output	High Current Flash Output
6C	R1	Output	Red LED 1 Output
6B	G1	Output	Green LED 1 Output
6A	B1	Output	Blue LED 1 Output
5F	GND_SW	Ground	Power Switch Ground
5E	GND	Ground	Ground
5D	V DDIO	Power	Supply Voltage for Logic Input/Output Buffers and Drivers
5C	SDA	Logic Input/Output	Serial Data In/Out (I2C)
5B	IRGB	Input	Bias Current Set Resistor for RGB Drivers
5A	GND_RGB	Ground	Ground for RGB Currents
4F	GND_WLED	Ground	Ground for WLED Currents
4E	IFLASH	Input	High Current Flash Current Set Resistor
4D	SYNC_PWM	Logic Input	External PWM Control for LEDs or External Clock for RGB Sync
4C	ADDR_SEL	Logic Input	Address Select (I2C)
4B	NRST	Logic Input	Reset Pin
4A	R2	Output	Red LED 2 Output
3F	WLED5	Output	White LED 5 Output
3E	WLED6	Output	White LED 6 Output
3D	VDD1	Power	Supply Voltage
3C	FLASH_EN	Logic Input	Enable for High Current Flash
3B	SCL	Logic Input	Clock (I2C)
3A	G2	Output	Green LED 2 Output
2F	WLED3	Output	White LED 3 Output
2E	WLED4	Output	White LED 4 Output
2D	ASE	Input	Audio Synchronization Input
2C	IRT	Input	Oscillator Frequency Resistor
2B	GNDT	Ground	Ground
2A	B2	Output	Blue LED 2 Output
1F	WLED1	Output	White LED 1 Output
1E	WLED2	Output	White LED 2 Output
1D	GNDA	Ground	Ground for Analog Circuitry
1C	VREF	Output	Reference Voltage
1B	V	PDA	$1 n t e r n a l ~ L D O ~ O u t p u t ~$
1A	VDD2	Supply Voltage	

Absolute Maximum Ratings (Notes 1, 2)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	
V (SW, FB, R1-2, G1-2, B1-2, FLASH, WLED1-6)(Notes 3, 4)	-0.3 V to +7.2 V
$\mathrm{V}_{\mathrm{DD1} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{DDIO}}, \mathrm{V}_{\mathrm{DDA}}$	-0.3V to +6.0V
Voltage on ASE, IRT, IFLASH, IRGB, VREF	$\begin{array}{r} -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD} 1}+0.3 \mathrm{~V} \\ \text { with } 6.0 \mathrm{~V} \text { max } \end{array}$
Voltage on Logic Pins	$\begin{array}{r} -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DDIO}}+0.3 \mathrm{~V} \\ \text { with } 6.0 \mathrm{~V} \text { max } \end{array}$
V (all other pins): Voltage to GND	-0.3V to 6.0V
$1\left(\mathrm{~V}_{\text {REF }}\right)$	$10 \mu \mathrm{~A}$
I(R1, G1, B1, R2, G2, B2)	100 mA
I(FLASH)(Note 5)	400 mA
Continuous Power Dissipation (Note 6)	Internally Limited
Junction Temperature ($\mathrm{T}_{\text {J-max }}$)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering) (Note 7)	$260^{\circ} \mathrm{C}$
ESD Rating (Note 8)	
Human Body Model:	2 kV

Absolute Maximum Ratings (Notes 1,2$)$ If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V (SW, FB, R1-2, G1-2, B1-2, FLASH, WLED1-6)(Notes 3, 4)
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{DDI}}, \mathrm{V}_{\mathrm{DDA}}$
Voltage on ASE, IRT, IFLASH, IRGB, VREF
Voltage on Logic Pins

V (all other pins): Voltage to GND
($\mathrm{V}_{\mathrm{REF}}$)
l(R1, G1, B1, R2, G2, B2)
(FLASH)(Note 5)
(Note 6)
Junction Temperature ($\mathrm{T}_{\mathrm{JMAX}}$)
Storage Temperature Range
Maximum Lead Temperature
ESD Rating (Note 8)
Human Body Model:
2 kV

Operating Ratings (Notes 1, 2)

V (SW, FB, WLED1-6, R1-2, G1-2, 0 to 6.0 V B1-2, FLASH)
$\mathrm{V}_{\mathrm{DD1} 1,2}$ with external LDO
2.7 to 5.5 V
$V_{D D 1,2}$ with internal LDO
$V_{\text {DDA }}$
$V_{\text {DDIO }}$
Voltage on ASE
Recommended Load Current Junction Temperature (T_{J}) Range
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ Range (Note 9)

Thermal Properties
Junction-to-Ambient Thermal
$60^{\circ} \mathrm{C} / \mathrm{W}$ Resistance $\left(\theta_{\text {JA }}\right)$, TLA36AAA or RLA36AAA Package (Note 10)

Electrical Characteristics
(Notes 2, 11)
Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Limits in boldface type apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}\right.$ $<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$). Unless otherwise noted, specifications apply to the LP39542 Block Diagram with: $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDIO}}=2.8 \mathrm{~V}$, $C_{V D D}=C_{V D D I O}=100 \mathrm{nF}, C_{\text {OUT }}=C_{I N}=10 \mu F, C_{V D D A}=1 \mu F, C_{\text {REF }}=100 \mathrm{nF}, L_{1}=4.7 \mu \mathrm{H}, \mathrm{R}_{\text {FLASH }}=910 \Omega, \mathrm{R}_{\text {RGB }}=5.6 \mathrm{k} \Omega$ and R_{RT} $=82 \mathrm{k} \Omega$ (Note 12).

Symbol	Parameter	Condition	Min	Typ	Max	Units
$I_{\text {VDD }}$	Standby supply current $\left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}\right)$	$\begin{aligned} & \text { NSTBY (bit) = L, NRST }(\text { pin })=\mathrm{H} \\ & \text { SCL=H, SDA }=\mathrm{H} \end{aligned}$		1	8	$\mu \mathrm{A}$
	No-boost supply current $\left(V_{D D 1}+V_{D D 2}\right)$	$\begin{aligned} & \hline \text { NSTBY }(\text { bit })=\mathrm{H}, \\ & \text { EN_BOOST(bit) }=\text { L } \\ & \text { SCL }=\mathrm{H}, \text { SDA }=\text { H } \\ & \text { Audio sync and LEDs OFF } \end{aligned}$			450	$\mu \mathrm{A}$
	No-load supply current $\left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}\right)$	$\begin{aligned} & \text { NSTBY (bit) }=\mathrm{H}, \\ & \text { EN_BOOST } \text { (bit) }=\mathrm{H} \\ & \text { SCL = H, SDA = H } \end{aligned}$ Audio sync and LEDs OFF Autoload OFF			1	mA
	RGB drivers $\left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}\right)$	CC mode at R1, G1, B1 and R2, G2, B2 set to 15 mA SW mode		$\begin{aligned} & \hline 150 \\ & 150 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$
	WLED drivers $\left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}\right)$	$4+2$ banks $\mathrm{I}_{\text {OUT }}=25.5 \mathrm{~mA}$ per LED		500		$\mu \mathrm{A}$
	Audio synchronization $\left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}\right)$	$\begin{array}{\|l} \hline \text { Audio sync } \mathrm{ON} \\ \mathrm{~V}_{\mathrm{DD} 1,2}=2.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD} 1,2}=3.6 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 390 \\ & 700 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$
	$\begin{array}{\|l} \hline \text { Flash } \\ \left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}\right) \\ \hline \end{array}$	$\mathrm{I}\left(\mathrm{R}_{\mathrm{FLASH}}\right)=1 \mathrm{~mA}$ Peak current during flash		2		mA
$\mathrm{I}_{\text {VDdio }}$	$\mathrm{V}_{\text {DDIO }}$ Standby Supply current	$\begin{aligned} & \text { NSTBY (bit)=L } \\ & \text { SCL }=H, \text { SDA }=H \end{aligned}$			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {EXt_LDO }}$	External LDO output current $\left(\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{DDA}}\right)$	7 V tolerant application only $\mathrm{I}_{\text {BOOSt }}=300 \mathrm{~mA}$			6.5	mA
$\mathrm{V}_{\text {DDA }}$	Output voltage of internal LDO for analog parts	(Note 13)	$\begin{gathered} \hline 2.72 \\ -3 \\ \hline \end{gathered}$	2.80	$\begin{gathered} 2.88 \\ +3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \% \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.
Note 2: All voltages are with respect to the potential at the GND pins.
Note 3: Battery/Charger voltage should be above 6 V no more than 10% of the operational lifetime.
Note 4: Voltage tolerance of LP39542 above 6.0 V relies on fact that $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}(2.8 \mathrm{~V})$ are available (ON) at all conditions. If $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ are not available (ON) at all conditions, National Semiconductor does not guarantee any parameters or reliability for this device.
Note 5: The total load current of the boost converter in worst-case conditions is limited to 300 mA (min. input and max. output voltage).
Note 6: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $\mathrm{T}_{\mathrm{J}}=160^{\circ} \mathrm{C}$ (typ.) and disengages at $\mathrm{T}_{\mathrm{J}}=140^{\circ} \mathrm{C}$ (typ.).
Note 7: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112 : Micro SMD Wafer Level Chip Scale Package or Application note AN1412: Micro SMDxt Wafer Lever Chip Scale Package
Note 8: The Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.
Note 9: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $\left(T_{A-M A X}\right)$ is dependent on the maximum operating junction temperature $\left(T_{J-M A X-O P}=125^{\circ} \mathrm{C}\right)$, the maximum power dissipation of the device in the application ($\mathrm{P}_{\mathrm{D}-\mathrm{MAX}}$), and the junction-to ambient thermal resistance of the part/package in the application $\left(\theta_{\mathrm{JA}}\right)$, as given by the following equation: $T_{A-M A X}=T_{J-M A X-O P}-\left(\theta_{J A} \times P_{D-M A X}\right)$.
Note 10: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
Note 11: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.
Note 12: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
Note 13: $\mathrm{V}_{\mathrm{DDA}}$ output is not recommended for external use.

Block Diagram

Modes of Operation

In the RESET mode all the internal registers are reset to the default values and the chip goes to STANDBY mode after reset. NSTBY control bit is low after reset by default. Reset is active always if NRST input pin is low or internal Power On Reset is active. LP39542 can be also reset by writing any data to Reset Register in address 60 H . Power On Reset (POR) will activate during the chip startup or when the supply voltage $\mathrm{V}_{\mathrm{DD} 2}$ falls below 1.5 V . Once $\mathrm{V}_{\mathrm{DD} 2}$ rises above 1.5 V , POR will inactivate and the chip will continue to the STANDBY mode.

STANDBY:

The STANDBY mode is entered if the register bit NSTBY is LOW. This is the low power consumption mode, when all circuit functions are disabled. Registers can be written in this mode and the control bits are effective immediately after power up.
STARTUP: When NSTBY bit is written high, the INTERNAL STARTUP SEQUENCE powers up all the needed internal blocks (Vref, Bias, Oscillator etc..). To ensure the correct oscillator initialization, a 10 ms delay is generated by the internal state-machine. If the chip temperature rises too high, the Thermal Shutdown (TSD) disables the chip operation and STARTUP mode is entered until no thermal shutdown event is present.
BOOST STARTUP: Soft start for boost output is generated in the BOOST STARTUP mode. The boost output is raised in PFM mode during the 10 ms delay generated by the state-machine. The Boost startup is entered from Internal Startup Sequence if EN_BOOST is HIGH or from Normal mode when EN_BOOST is written HIGH. During the 10 ms Boost Startup time all LED outputs are switched off to ensure smooth start-up.
NORMAL: During NORMAL mode the user controls the chip using the Control Registers. The registers can be written in any sequence and any number of bits can be altered in a register in one write

Magnetic Boost DC/DC Converter

The LP39542 Boost DC/DC Converter generates a 4.0-5.3V voltage for the LEDs from single Li-lon battery ($3 \mathrm{~V} . . .4 .5 \mathrm{~V}$). The output voltage is controlled with an 8-bit register in 9 steps. The converter is a magnetic switching PWM mode DC/ DC converter with a current limit. The converter has three options for switching frequency, $1 \mathrm{MHz}, 1.67 \mathrm{MHz}$ and 2 MHz (default), when timing resistor RT is $82 \mathrm{k} \Omega$. Timing resistor defines the internal oscillator frequency and thus directly affects boost frequency and all circuit's internally generated timing (RGB, Flash, WLED fading).
The LP39542 Boost Converter uses pulse-skipping elimination to stabilize the noise spectrum. Even with light load or no load a minimum length current pulse is fed to the inductor. An active load is used to remove the excess charge from the output capacitor at very light loads. At very light load and when input and output voltages are very close to each other, the pulse skipping is not completely eliminated. Output voltage should be at least 0.5 V higher than input voltage to avoid pulse skipping. Reducing the switching frequency will also reduce the required voltage difference.
Active load can be disabled with the en_autoload bit. Disabling will increase the efficiency at light loads, but the downside is that pulse skipping will occur. The Boost Converter should be stopped when there is no load to minimise the current consumption.

The topology of the magnetic boost converter is called CPM control, current programmed mode, where the inductor current is measured and controlled with the feedback. The user can program the output voltage of the boost converter. The output voltage control changes the resistor divider in the feedback loop.
The following figure shows the boost topology with the protection circuitry. Four different protection schemes are implemented:

1. Over voltage protection, limits the maximum output voltage

- Keeps the output below breakdown voltage.
- Prevents boost operation if battery voltage is much higher than desired output.

2. Over current protection, limits the maximum inductor current
— Voltage over switching NMOS is monitored; too high voltages turn the switch off.
3. Feedback break protection. Prevents uncontrolled operation if FB pin gets disconnected.
4. Duty cycle limiting, done with digital control.

Boost Converter Topology

Magnetic Boost DC/DC Converter Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{l}_{\text {LOAD }}$	Load Current	$\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \hline \end{aligned}$	0		300	mA
		$\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \\ & \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} \\ & \hline \end{aligned}$	0		400	
$\mathrm{V}_{\text {OUT }}$	Output Voltage Accuracy (FB Pin)	$\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {OUT }}-0.5 \\ & \mathrm{~V}_{\text {OUT }}=5.0 \mathrm{~V} \end{aligned}$	-5		+5	\%
	Output Voltage (FB Pin)	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq 300 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}>5 \mathrm{~V}+\mathrm{V}_{(\mathrm{SCHOTTKY})} \end{aligned}$		$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {(SСНотткY) }}$		V
$\mathrm{RDS}_{\mathrm{ON}}$	Switch ON Resistance	$\mathrm{V}_{\mathrm{DD} 1,2}=2.8 \mathrm{~V}, \mathrm{I}_{\mathrm{SW}}=0.5 \mathrm{~A}$		0.4	0.8	Ω
$\mathrm{f}_{\text {boost }}$	PWM Mode Switching Frequency	$\begin{aligned} & \mathrm{RT}=82 \mathrm{k} \Omega \\ & \text { freq_sel[2:0] = } 1 \mathrm{XX} \\ & \hline \end{aligned}$		2		MHz
	Frequency Accuracy	$\begin{aligned} & 2.7 \leq \mathrm{VDDA} \leq 2.9 \\ & \mathrm{RT}=82 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & -6 \\ & -9 \end{aligned}$	± 3	$\begin{aligned} & +6 \\ & +9 \end{aligned}$	\%
$\mathrm{t}_{\text {PULSE }}$	Switch Pulse Minimum Width	no load		25		ns
$\mathrm{t}_{\text {STARTUP }}$	Startup Time	Boost startup from STANDBY		10		ms
$\mathrm{I}_{\text {SW_MAX }}$	SW Pin Current Limit		$\begin{aligned} & 700 \\ & 550 \\ & \hline \end{aligned}$	800	$\begin{aligned} & \hline 900 \\ & 950 \\ & \hline \end{aligned}$	mA

BOOST STANDBY MODE

User can stop the Boost Converter operation by writing the Enables register bit EN_BOOST low. When EN_BOOST is written high, the converter starts for 10 ms in PFM mode and then goes to PWM mode.

BOOST OUTPUT VOLTAGE CONTROL

User can control the boost output voltage by boost output 8bit register.

Boost Output [7:0] Register 0DH		Boost Output Voltage (typical)
Bin	Hex	
00000000	00	4.00
00000001	01	4.25
00000011	03	4.40
00000111	07	4.55
00001111	0F	4.70
00011111	1F	4.85
$\mathbf{0 0 1 1} 1111$	3F	$\mathbf{5 . 0 0}$ Default
01111111	7F	5.15
11111111	FF	5.30

Boost Output Voltage Control

30008509
BOOST FREQUENCY CONTROL

freq_sel[2:0]	frequency
1 XX	2.00 MHz
01 X	1.67 MHz
001	1.00 MHz

Register 'boost freq' (address 0EH). Register default value after reset is 07 H .

Boost Converter Typical Performance Characteristics

Vin $=3.6 \mathrm{~V}$, Vout $=5.0 \mathrm{~V}$ if not otherwise stated

Boost Load Transient, $\mathbf{5 0} \mathrm{mA}-100 \mathrm{~mA}$

30008516

Boost Switching Frequency

30008517
Efficiency at Low Load vs Autoload

Functionality of Color LED Outputs (R1, G1, B1; R2, G2, B2)

LP39542 has 2 sets of RGB/color LED outputs. Both sets have 3 outputs and the sets can be controlled in 4 different ways:

1. Command based pattern generator control (internal PWM)
2. Audio synchronization control
3. Programmable ON/OFF blinking sequences for RGB1
4. External PWM control

By using command based pattern generator user can program any kind of color effect patterns. LED intensity, blinking cycles and slopes are independently controlled with 8 16-bit commands. Also real time commands are possible as well as loops and step by step control. If analog audio is available on system, the user can use audio synchronization for synchronizing LED blinking to the music. The different modes together with the various sub modes generate very colorful and interesting lighting effects. Direct ON/OFF control is mainly for switching on and off LEDs. External PWM control is for applications where external PWM signal is available and required to control the color LEDs. PWM signal can be connected to any color LED separately as shown later.

COLOR LED CONTROL MODE SELECTION

The RGB_SEL[1:0] bits in the Enables register (08H) control the output modes for RGB1 (R1, G1, B1) and RGB2 (R2, G2, B2) outputs as seen in the following table.

RGB_SEL [1:0]	Audio sync	Pattern generator	Blinking control
00	-	RGB1 \& RGB2	-
01	-	RGB2	RGB1
10	RGB2	RGB1	-
11	RGB1 \& RGB2	-	-

RGB Control register (00 H) has control bits for direct on/off control of all color LEDs. Note that the LEDs have to be turned on in order to control them with audio synchronization or pattern generator.
The external PWM signal can control any LED depending on the control register setup. External PWM signal is connected to PWM/SYNC pin. The controls are in the Ext. PWM Control register (address 07H) except the FLASH control in HC_Flash (10H) register as follows:

Ext. PWM Control (07H)		
wled1-4_pwm	bit 7	PWM controls WLED 1-4
wled5-6_pwm	bit 6	PWM controls WLED 5-6
r1_pwm	bit 5	PWM controls R1 output
g1_pwm	bit 4	PWM controls G1 output
b1_pwm	bit 3	PWM controls B1 output
r2_pwm	bit 2	PWM controls R2 output
g2_pwm	bit 1	PWM controls G2 output
b2_pwm	bit 0	PWM controls B2 output
HC_Flash (10H)		
hc_pwm	bit 5	PWM controls FLASH

Note: If DISPL=1, wled1-4pwm controls WLED1-6
Note: Maximum external PWM frequency is 1 kHz . If during the external PWM control the internal PWM is on, the result will be product of both functions.

CURRENT CONTROL OF COLOR LED OUTPUTS (R1, R2, G1, G2, B1, B2)
Both RGB output sets can be separately controlled as constant current sinks or as switches. This is done using cc_rgb1/2 bits in the RGB control register. In constant current mode one or both RGB output sets are controlled with constant current sinks (no external ballast resistors required). The maximum output current for both drivers is set by one external resistor $\mathrm{R}_{\mathrm{RGB}}$. User can decrease the maximum current for an individual LED driver by programming as shown later.
The maximum current for all RGB drivers is set with $R_{R G B}$. The equation for calculating the maximum current is

$$
\mathrm{I}_{\mathrm{MAX}}=100 \times 1.23 \mathrm{~V} /\left(\mathrm{R}_{\mathrm{RGB}}+50 \Omega\right)
$$

where
$\mathrm{I}_{\text {MAX }}$ - maximum RGB current in any RGB output in constant current mode
1.23 V - reference voltage

100 - internal current mirror multiplier
$\mathrm{R}_{\mathrm{RGB}}$ - resistor value in Ohms
50Ω - internal resistor in the $\mathrm{I}_{\mathrm{RGB}}$ input
For example if 22 mA is required for maximum RGB current $\mathrm{R}_{\mathrm{RGB}}$ equals to
$\mathrm{R}_{\mathrm{RGB}}=100 \times 1.23 \mathrm{~V} / \mathrm{I}_{\mathrm{MAX}}-50 \Omega=123 \mathrm{~V} / 0.022 \mathrm{~A}-50 \Omega=5.54 \mathrm{k} \Omega$
Each individual RGB output has a separate maximum current programming. The control bits are in registers RGB1 max current and RGB2 max current (12 H and 13 H) and programming is shown in table below. The default value after reset is 00 b .

IR1[1:0], IG1[1:0], IB1[1:0], IR2[1:0], IG2[1:0], IB2[1:0]	Maximum current/output
00	$0.25 \times \mathrm{I}_{\text {MAX }}$
01	$0.50 \times \mathrm{I}_{\text {MAX }}$
10	$0.75 \times \mathrm{I}_{\text {MAX }}$
11	$1.00 \times \mathrm{I}_{\text {MAX }}$

SWITCH MODE

The switch mode is used if there is a need to connect parallel LEDs to output or if the RGB output current needs to be increased.
Please note that the switch mode requires an external ballast resistors at each output to limit the LED current.
The switch/current mode and on/off controls for RGB are in the RGB_ctrl register (00 H).

RGB_ctrl register (00H)

CC_RGB1	bit7	1	R1, G1 and B1 are switches \rightarrow limit current with ballast resistor
		0	R1, G1 and B1 are constant current sinks, current limited internally
CC_RGB2	bit6	1	R2, G2 and B2 are switches \rightarrow limit current with ballast resistor
		0	R2, G2 and B2 are constant current sinks, current limited internally
r1sw	bit5	1	R1 is on
		0	R1 is off
g1sw	bit4	1	G1 is on
		0	G1 is off
b1sw	bit3	1	B1 is on
		0	B1 is off
r2sw	bit2	1	R2 is on
		R2 is off	
g2sw	bit1	1	G2 is on
		G2 is off	
b2sw	bit0	1	B2 is on
		0	B2 is off

RGB1 output as switch (SW)

RGB1 output as a constant current sink (CC)

Command Based Pattern Generator for Color LEDs

The LP39542 has an unique stand-alone command based pattern generator with 8 user controllable 16-bit commands.

Since registers are 8 -bit long one command requires 2 write cycles. Each command has intensity level for each LED, command execution time (CET) and transition time (TT) as seen in the following figures.

16 bits

COMMAND REGISTER WITH 8 COMMANDS

COMMAND 1	ADDRESS 50H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 51H	CET1	CETO	B2	B1	B0	TT2	TT1	TTO
COMMAND 2	ADDRESS 52 H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 53H	CET1	CETO	B2	B1	B0	TT2	TT1	TTO
COMMAND 3	ADDRESS 54H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 55H	CET1	CETO	B2	B1	B0	TT2	TT1	TT0
COMMAND 4	ADDRESS 56H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 57H	CET1	CET0	B2	B1	B0	TT2	TT1	TT0
COMMAND 5	ADDRESS 58H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 59H	CET1	CET0	B2	B1	B0	TT2	TT1	TT0
COMMAND 6	ADDRESS 5AH	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 5BH	CET1	CET0	B2	B1	B0	TT2	TT1	TTO
COMMAND 7	ADDRESS 5CH	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 5DH	CET1	CETO	B2	B1	B0	TT2	TT1	TT0
COMMAND 8	ADDRESS 5EH	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 5FH	CET1	CETO	B2	B1	B0	TT2	TT1	TT0

COLOR INTENSITY CONTROL

Each color has 3-bit intensity level. Level control is logarithmic, 2 curves are selectable. The LOG bit in register 11H defines the curve used as seen in the following table.

R[2:0], G[2:0], B[2:0]	CURRENT $\left[\% \times \mathrm{I}_{\text {MAX(COLOR) }}\right]$	
	LOG=0	LOG=1
000	0	0
001	7	1
010	14	2
011	21	4
100	32	10
101	46	21
110	71	46
111	100	100

COMMAND EXECUTION TIME (CET) AND TRANSITION TIME (TT)

The command execution CET time is the duration of one single command. Command execution times CET are defined as follows, when $\mathrm{R}_{\mathrm{T}}=82 \mathrm{k} \Omega$:

CET [3:0]	CET duration, ms
0000	197
0001	393
0010	590
0011	786
0100	983
0101	1180
0110	1376
0111	1573
1000	1769
1001	1966
1010	2163
1011	2359
1100	2556
1101	2753

CET [3:0]	CET duration, ms
1110	2949
1111	3146

Transition time TT is duration of transition from the previous RGB value to programmed new value. Transition times TT are defined as follows:

TT [2:0]	Transition time, ms
000	0
001	55
010	110
011	221
100	442
101	885
110	1770
111	3539

The figure below shows an example of RGB CET and TT times.

The command execution time also may be less than the transition time - the figure below illuminates this case.

LOOP CONTROL

Pattern generator commands can be looped using the LOOP bit (D1) in Pattern gen ctrl register (11H). If LOOP=1 the program will be looped from the command 8 register or if there
is 00000000 and 00000000 in one command register. The loop will start from command 1 and continue until stopped by writing rgb_start=0 or loop=0. The example of loop is shown in following figure:

SINGLE PROGRAM
If control bit LOOP=0 the program will start from Command 1 and run to either last command or to empty "0000 0000 / 0000 0000" command.

The LEDs maintain the brightness of the last command when the single program stops. Changes in command register will not be effective in this phase. The RGB_START bit has to be toggled off and on to make changes effective.

Pattern gen ctrl register (11H)		
rgb_start	Bit 2	$0-$ Pattern generator disabled 1 - execution pattern starting from command 1
loop	Bit 1	0 - pattern generator loop disabled (single pattern) 1 - pattern generator loop enabled (execute until stopped)
log	Bit 0	0 - color intensity mode 0 $1-$ color intensity mode 1

Audio Synchronization

The color LEDs connected to RGB outputs can be synchronized to incoming audio with Audio Synchronization feature. Audio Sync has 2 modes. Amplitude mode synchronizes color LEDs based on input signal's peak amplitude. In the amplitude mode the user can select between 3 different amplitude mapping modes and 4 different speed configurations. The frequency mode synchronizes the color LEDs based on bass, middle and treble amplitudes (= low pass, band pass and high pass filters). User can select between 2 different frequency responses and 4 different speed configurations for best audio-visual user experience. Programmable gain and AGC function are also available for adjustment of input signal amplitude to light response. The Audio Sync functionality is described more closely below.

USING A DIGITAL PWM AUDIO SIGNAL AS AN AUDIO SYNCHRONIZATION SOURCE

If the input signal is a PWM signal, use a first or second order low pass filter to convert the digital PWM audio signal into an analog waveform. There are two parameters that need to be known to get the filter to work successfully: frequency of the PWM signal and the voltage level of the PWM signal. Suggested cut-off frequency (-3 dB) should be around 2 kHz to 4 kHz and the stop-band attenuation at sampling frequency should be around -48 dB or better. Use a resistor divider to reduce the digital signal amplitude to meet the specification of the analog audio input. Because a low-order low-pass filter attenuates the high-frequency components from audio signal, MODE_CTRL=01b selection is recommended when frequency synchronization mode is enabled. Application example 5 shows an example of a second order RC-filter for 29 kHz

PWM signal with 3.3 V amplitude. Active filters, such as a Sallen-Key filter, may also be applied. An active filter gives better stop-band attenuation and cut-off frequency can be higher than for a RC-filter.
To make sure that the filter rolls off sufficiently quickly, connect your filter circuit to the audio input(s), turn on the audio synchronization feature, set manual gain to maximum, apply the PWM signal to the filter input and keep an eye on LEDs. If they are blinking without an audio signal (modulation), a sharper roll-off after the cut-off frequency, more stop-band attenuation, or smaller amplitude of the PWM signal is required.

AUDIO SYNCHRONIZATION SIGNAL PATH

LP39542 audio synchronization is mainly done digitally and it consists of the following signal path blocks:

- Input Buffers
- AD Converter
- DC Remover
- Automatic Gain Control (AGC)
- Programmable Gain
- 3 Band Digital Filter
- Peak Detector
- Look-up Tables (LUT)
- Mode Selector
- Integrators
- PWM Generator
- Output Drivers

30008525
scribed in the Audio Synch table. The buffer is rail-to-rail input operational amplifier connected as a voltage follower. DC level of the input signal is set by a simple resistor divider

AUDIO SYNCHRONIZATION ELECTRICAL PARAMETERS

Symbol	Parameter	Conditions	Min	Typical	Max	Units
$\mathrm{Z}_{\text {IN }}$	Input Impedance of ASE		250	500		$\mathrm{k} \Omega$
$\mathrm{A}_{\text {IN }}$	Audio Input Level Range (peak-to-peak)	$\begin{aligned} & \text { Gain }=21 \mathrm{~dB} \\ & \text { Gain }=0 \mathrm{~dB} \end{aligned}$	0.1		$\mathrm{V}_{\text {DDA }}{ }^{-0.1}$	V
$\mathrm{f}_{3 \mathrm{~dB}}$	Crossover Frequencies (-3 dB) Narrow Frequency Response Wide Frequency Response	Low Pass Band Pass High Pass Low Pass Band Pass High Pass		0.5 1.0 and 1.5 2.0 1.0 2.0 and 3.0 4.0		kHz

CONTROL OF ADC AND AUDIO SYNCHRONIZATION

The following table describes the controls required for audio synchronization.

Audio_sync_CTRL1 (2AH)				
GAIN_SEL[2:0]	Bits 7-5	Input signal gain contro.	... 21 dB , step	
		$\begin{aligned} & {[000]=0 \mathrm{~dB} \text { (default) }} \\ & {[001]=3 \mathrm{~dB}} \\ & {[010]=6 \mathrm{~dB}} \\ & \hline \end{aligned}$	$\begin{aligned} & {[011]=9 \mathrm{~dB}} \\ & {[100]=12 \mathrm{~dB}} \\ & {[101]=15 \mathrm{~dB}} \end{aligned}$	$\begin{aligned} & {[110]=18 \mathrm{~dB}} \\ & {[111]=21 \mathrm{~dB}} \end{aligned}$
SYNC_MODE	Bit 4	Synchronization mode selector. SYNCMODE $=0 \rightarrow$ Amplitude Mode (default) SYNCMODE $=1 \rightarrow$ Frequency Mode		
EN_AGC	Bit 3	$\begin{array}{\|l} \hline \text { Automatic Gain Control enable } \\ 1=\text { enabled } \\ 0=\text { disabled (Gain Select enabled) (default) } \\ \hline \end{array}$		
EN_SYNC	Bit 2	Audio synchronization enable 1 = Enabled Note : If AGC is enabled, AGC gain starts from current GAIN_SEL gain value. $0=$ Disabled (default)		
INPUT_SEL[1:0]	Bits 1-0	$\begin{aligned} & {[00]=\text { Single ended input signal, ASE. }} \\ & {[01]=\text { Temperature measurement }} \\ & {[10]=\text { Ambient light measurement }} \\ & {[11]=\text { No input (default) }} \end{aligned}$		
Audio_sync_CTRL2 (2BH)				
EN_AVG	Bit 4	0 - averaging disabled (not applicable in audio sync mode) 1 - averaging enabled (not applicable in audio sync mode)		
MODE_CTRL[1:0]	Bits 3-2	See below: Mode control		
SPEED_CTRL[1:0]	Bits 1-0	Sets the LEDs light response time to audio input. $\begin{aligned} & {[00]=\text { FASTEST }(\text { default })} \\ & {[01]=\text { FAST }} \\ & {[10]=\text { MEDIUM }} \\ & {[11]=\text { SLOW }} \end{aligned}$ (For SLOW setting in amplitude mode $\mathrm{f}_{\text {MAX }}=3.8 \mathrm{~Hz}$, $\text { Frequency mode } \left.\mathrm{f}_{\mathrm{MAX}}=7.6 \mathrm{~Hz}\right)$		

MODE CONTROL IN FREQUENCY MODE

Mode control has two setups based on audio synchronization mode select: the frequency mode and the amplitude mode. During the frequency mode user can select two filter options by MODE_CTRL as shown below. User can select the filters

30008527

MODE CONTROL IN AMPLITUDE MODE

During the amplitude synchronization mode user can select between three different amplitude mappings by using

based on the music type and light effect requirements. In the first mode the frequency range extends to 8 kHz in the secont to 4 kHz .
The lowpass filter is used for the red, the bandpass filter for the blue and the hipass filter for the green LED.

MODE_CTRL select. These three mapping options give different light response. The modes are presented in the following graphs.

MODE_CTRL[1:0] = [00]

30008530

INPUT AMPLITUDE (\%)

30008532

RGB Output Synchronization to

 External ClockThe RGB pattern generator and high current flash driver timing can be synchronized to external clock with following configuration.

1. Set PWM_SYNC bit in Enables register to 1
2. Feed SYNC/PWM pin with 5 MHz clock

By this the internal 5 MHz clock is disabled from pattern generator and flash timing circuitry.
The external clock signal frequency will fully determine the timings related to RGB and Flash.
Note: The boost converter will use internal 5 MHz clock even if the external clock is available.

RGB LED Blinking Control

LP39542 has a possibility to drive indicator LEDs with RGB1 outputs with programmable blinking time. Blinking function is enabled with RGB_SEL[1:0] bits set as 01b in 0BH register. R1_CYCLE_EN, G1_CYCLE_EN and B1_CYCLE_EN bits in cycle registers $(02 \mathrm{H}, 04 \mathrm{H}$ and 06 H) enable/disable blinking function for corresponding output. When EN_BLINK bit is written high in register 11 H , the blinking sequences for all outputs (which has CYCLE_EN bit enabled) starts simultaneously. EN_BLINK bit should be written high after selecting wanted blinking sequences and enabling CYCLE_EN bits, to
synchronize outputs to get desired lighting effect. R1SW, G1SW and B1SW bits can be used to enable and disable outputs when wanted.
RGB1 blinking sequence is set with R1, G1 and B1 blink registers $(01 \mathrm{H}, 03 \mathrm{H}$ and 05 H$)$ by setting the appropriate OFF-ON times. Blinking cycle times are set with R1_CYCLE[2:0], G1_CYCLE[2:0] and B1_CYCLE[2:0] bits in R1, G1 and B1 CYCLE registers $(02 \mathrm{H}, 04 \mathrm{H}$ and 06 H$)$. OFF/ON time is a percentage of the selected cycle time. Values for setting OFF/ ON time can be seen in following table.

Name	Bit	Description	
R1_ON[3:0], R1_OFF[3:0]	7-4, 3-0	RGB1 ON and OFF time	
G1_ON[3:0], G1_OFF[3:0]		Bits	ON/OFF time
B1_ON[3:0], B1_OFF[3:0]		0000	0\%
		0001	1\%
		0010	2.5\%
		0011	5\%
		0100	7.5\%
		0101	10\%
		0110	15\%
		0111	20\%
		1000	30\%
		1001	40\%
		1010	50\%
		1011	60\%
		1100	70\%
		1101	80\%
		1110	90\%
		1111	100\%

Blinking ON/OFF cycle is defined so that there will be first OFF-period then ON-period after which follows an off-period for the remaining cycle time that can not be set. If OFF and ON times are together more than 100% the first OFF time will be as set and the ON time is cut to meet 100%. For example,
if 50% OFF time is set and ON time is set greater than 50%, only 50% ON time is used, the exceeding ON time is ignored. If OFF and ON times are together less than 100% the remaining cycle time output is OFF.

Values for setting the blinking cycle for RGB1 can be seen in following table:

R1, G1 and B1 Cycle Registers (02H, 04H and 06H):

Name	Bit	Decription		
R1_CYCLE EN G1_CYCLE_EN B1_CYCLE_EN	3	Blinking enable 0 = disabled 1 = enabled, output state is defined with blinking cycle		
R1_CYCLE[2:0] G1_CYCLE[2:0] B1_CYCLE[2:0]	2-0	RGB1 cycle time		
		Bits	Blinking cycle time	Blinking frequency
		000	0.1 s	10 Hz
		001	0.25 s	4 Hz
		010	0.5s	2 Hz
		011	1s	1 Hz
		100	2s	0.5 Hz
		101	3s	0.33 Hz
		110	4s	0.25 Hz
		111	5s	0.2 Hz

PATTERN_GEN_CTRL Register (11H):

Name	Bit	Description
EN_BLINK	3	Blinking sequence start bit $0=$ disabled $1=$ enabled

RGB Driver Electrical Characteristics (R1, G1, B1, R2, G2, B2 Outputs)

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {LEAKAGE }}$	R1, G1, B1, R2, G2, B2 pin leakage current			0.1	1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{RGB}}$	Maximum recommended sink current	CC mode			40	mA
		SW mode			50	mA
	Accuracy @ 37mA	$\mathrm{R}_{\mathrm{RGB}}=3.3 \mathrm{k} \Omega \pm 1 \%$, CC mode		± 5		\%
	Current mirror ratio	CC mode		1:100		
	RGB1 and RGB2 current mismatch	$\mathrm{I}_{\text {RGB }}=37 \mathrm{~mA}, \mathrm{CC}$ mode		± 5		\%
$\mathrm{R}_{\text {SW }}$	Switch resistance	SW mode		2.5	5	Ω
$\mathrm{f}_{\mathrm{RGB}}$	RGB switching frequency	Accuracy proportional to internal clock freq.	18.2	20	21.8	kHz
		If SYNC to external 5 MHz clock is in use		20		kHz

Note: RGB current should be limited as follows:
constant current mode - limit by external $R_{R G B}$ resistor;
switch mode - limit by external ballast resistors

30008566

Pin Voltage vs Output Current (Switch Mode)

Output Current vs $\mathrm{R}_{\text {RGB }}$ (Current Sink Mode)

Single High Current Driver

LP39542 has internal constant current driver that is capable of driving high current LED, mainly targeted for FLASH LED in camera phone applications.

MAXIMUM CURRENT SETUP FOR FLASH

The user sets the maximum current of FLASH with R $_{\text {FLASH }}$ resistor based on following equation:

$$
\mathrm{I}_{\mathrm{MAX}}=300 \times 1.23 \mathrm{~V} /\left(\mathrm{R}_{\mathrm{FLASH}}+50 \Omega\right),
$$

where
Imax = maximum flash current in Amps (ie. 0.3A)
$1.23 \mathrm{~V}=$ reference voltage
300 = internal current mirror multiplier
$\mathrm{R}_{\text {FLASH }}=$ Resistor value in Ohms
$50 \Omega=$ Internal resistor in the $\mathrm{I}_{\text {FLASH }}$ input
For example if 400 mA is required for the maximum flash current, $\mathrm{R}_{\text {FLASH }}$ equals to

$$
\begin{aligned}
\mathrm{R}_{\text {FLASH }}= & 300 \times 1.23 \mathrm{~V} / \mathrm{I}_{\text {MAX }}-50 \Omega=369 \mathrm{~V} / 0.4 \mathrm{~A}-50 \Omega= \\
& 873 \Omega \text { e.g. } 910 \Omega \text { resistor can be used }
\end{aligned}
$$

CURRENT CONTROL FOR FLASH

To minimize the internal current consumption, the flash function has an enable bit EN_HCFLASH in the HC_Flash register.

EN_- HCFLASH	MODE
0	FLASH disabled, no extra current consumption through R $_{\text {FLASH }}$
1	FLASH enabled, IFLASH set by HC_SW[1:0] (see below)

FL_T[1:0]	Flash duration typ	Current during view finder/ focusing	Current during FLASH
00	200 ms	Set by $\mathrm{HC}[1: 0]$	$\mathrm{HC}[11]=\mathrm{I}_{\text {MAX(FLASH) }}$
01	400 ms	Set by HC[1:0]	$\mathrm{HC}[11]=\mathrm{I}_{\text {MAX(FLASH) }}$
10	600 ms	Set by HC[1:0]	$\mathrm{HC}[11]=\mathrm{I}_{\text {MAX(FLASH) }}$
11	EN_FLASH on duration	Set by HC[1:0]	$\mathrm{HC}[11]=\mathrm{I}_{\text {MAX(FLASH) }}$

After the flash pulse the EN_HCFLASH bit has to be written low, the LP39542 does not clear this bit automatically. If 11b is selected in the $\mathrm{FL} _\mathrm{T}[1: 0]$ register, then it is possible to use safety bit EN_SAFETY in register 10H. When EN_SAFETY is 1 , then the flash is shut down automatically, if the

HC[1:0] bits in the HC_Flash register control the FLASH current as show in following table.

$\mathbf{H C}[1: 0]$	$\mathbf{l (F L A S H})$
00	$0.25 \times \mathrm{I}_{\text {MAX(FLASH) }}$
01	$0.50 \times \mathrm{I}_{\text {MAX(FLASH) }}$
10	$0.75 \times \mathrm{I}_{\text {MAX(FLASH) }}$
11	$1.00 \times \mathrm{I}_{\text {MAX(FLASH) }}$

The figure below shows the internal structure for the FLASH driver.

FLASH TIMING

Flash output is turned on in lower current View finder mode when the EN_HCFLASH bit is written high. The actual flash at maximum current starts when the FLASH_EN digital input pin goes high. The Flash length can be selected from 3 predefined values or the FLASH_EN pin pulse length can determine how long the flash pulse is. After flash pulse the flash is shut down completely. To enable flash again, EN_HCFLASH bit must be set to 0 and then 1.The pulse length is controlled by the FT_T[1:0] bits in register 10 H as show in the table below.

FLASH_EN pulse duration is longer than 1.2 seconds (typ.). This prevents any damage to the application circuitry, if the FLASH_EN pin is stuck high because of user or program error.

The following figure shows the functionality of the built-in flash

Flash LED can be controlled also with external PWM signal:
HC_FLASH Register (10H):

Name	Bit	Description	
HC_PWM	5	Flash external PWM control $0=$ Flash external PWM control disabled $1=$ Flash external PWM control enabled	

High Current Driver Electrical Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {LEAKAGE }}$	FLASH pin leakage current			0.1	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {MAX(FLASH) }}$	Maximum Sink Current				400	mA
	Accuracy	$\mathrm{R}_{\text {FLASH }}=910 \Omega$	$\begin{gathered} -10 \\ -5 \end{gathered}$		$\begin{gathered} \hline 10 \\ 5 \end{gathered}$	\%
	Current mirror ratio			1:300		
$\mathrm{t}_{\text {SAFETY }}$	Flash safety time	EN_SAFETY = 1, FL_T = 11b		1.2		s

Backlight Drivers

LP39542 has 2 independent backlight drivers. Both drivers are regulated constant current sinks. LED current for both LED banks (WLED1 ... 4 and WLED5...6) are controlled by 8bit current mode DACs with 0.1 mA step.
WLED1... 4 and WLED5... 6 can be also controlled with one DAC for better matching allowing the use of larger displays having up to 6 white LEDs in parallel.
Display configuration is controlled with DISPL bit as shown in

DISPL	Configuration	Matching
Main display up to 4 LEDs Sub display up to 2 LEDs	Good btw WLED1...4 Good btw WLED5...6	
	Large display up to 6 LEDs	Good btw WLED 1...6

FADE IN / FADE OUT

LP39542 has an automatic fade in and out for main and sub backlight. The fade function is enabled to main and sub backlights with EN_FADE_W1_4 and EN_FADE_W5_6 register bits. Register bits SLOPE_W1_4 and SLOPE_W5_6 set the

WLED dimming, SLOPE=0

slope of the fade curve. The fading times are shown in the graphs, which corresponds the full range current change (0-255). Note that when large display mode is selected (DISPL = 1), then EN_FADE_W5_6 and SLOPE_W5_ 6 bits do not have any effect.

WLED Control Register (08H):

Name	Bit	Description
SLOPE_W5_6	6	Slope for WLED5-6 $0=$ Full range fade execution time 1.30s $1=$ Full range fade execution time 0.65s
SLOPE_W1_4	5	Slope for WLED1-4 $0=$ Full range fade execution time 1.30s $1=$ Full range fade execution time 0.65s
EN_FADE_W5_6	4	Enable fade for WLED5-6 $0=$ Fade disabled = Fade enabled
EN_FADE_W1_4	3	Enable fade for WLED1-4 $0=$ Fade disabled $1=$ Fade enabled
DISPL	2	Large display mode enable $0=$ WLED1-4 and WLED5-6 are controlled separately $1=$ WLED1-4 and WLED5-6 are controlled with WLED1-4 controls
EN_W1_4	1	Enable WLED1-4 $0=$ WLED1-4 disabled $1=$ WLED1-4 enabled
EN_W5_6	0	Enable WLED5-6 $0=$ WLED5-6 disabled $1=$ WLED5-6 enabled

ADJUSTMENT

WLED1-4[7:0] WLED5-6[7:0]	Driver current, mA (typical)
00000000	0
00000001	0.1
00000010	0.2
00000011	0.3
\ldots	\ldots
\ldots	\ldots
1111101	25.3
11111110	25.4
11111111	25.5

WLED Output Current vs. Voltage

Backlight Driver Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typical	Max	Units
$\mathrm{I}_{\text {MAX }}$	Maximum Sink Current		$\mathbf{2 1 . 3}$	25.5	$\mathbf{2 9 . 4}$	mA
$\mathrm{I}_{\text {leakage }}$	Leakage Current			0.03	$\mathbf{1}$	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {WLED1 }}$	WLED1 Current tolerance	$\mathrm{I}_{\text {WLED1 }}$ set to 12.8 mA (80H)	$\mathbf{1 0 . 5 2}$	12.8 $\mathbf{- 1 8}$	$\mathbf{1 4 . 7 8}$ $\mathbf{+ 1 6}$	mA $\%$
$\mathrm{I}_{\text {match1-4 }}$	Sink Current Matching	$\mathrm{I}_{\text {SINK }}=13 \mathrm{~mA}$, Between WLED1...4		0.2		$\%$
$\mathrm{I}_{\text {match5-6 }}$	Sink Current Matching	$\mathrm{I}_{\text {SINK }}=13 \mathrm{~mA}$, Between WLED5...6		0.2		$\%$
$\mathrm{I}_{\text {match1-6 }}$	Sink Current Matching	$\mathrm{I}_{\text {SINK }}=13 \mathrm{~mA}$, Between WLED1...6		0.3		$\%$

Note: Matching is the maximum difference from the average.

Ambient Light and Temperature Measurement with LP39542

The Analog-to-Digital converter (ADC) in the Audio Syncronization block can be also used for ambient light measurement or temperature measurement.
The selection between these modes is controlled with input selector bits INPUT_SEL[1:0] in register 2AH as seen on the following table. Internal averaging function can be used to filter unwanted noise from the measured signal. Averaging function can be enabled with EN_AVG bit in register 2BH.

INPUT_SEL[1:0]	Mode
00	Audio synchronization
01	Temperature measurement (voltage input)
10	Ambient light measurement (current input)
11	No input

EN_AVG = 0	Averaging disabled. $\mathrm{f}_{\text {sample }}=122 \mathrm{~Hz}$, data in register changes every 8.2 ms.
EN_AVG = 1	Averaging enabled. $\mathrm{f}_{\text {sample }}=244 \mathrm{~Hz}$, averaging of 64 samples, data in register changes every 262 ms $(3.2 \mathrm{~Hz})$.

AMBIENT LIGHT MEASUREMENT

The ambient light measurement requires only one external component: Ambient light sensor (photo transistor or diode). The ADC reads the current level at ASE pin and converts the result into a digital word. User can read the ADC output from the ADC output register. The known ambient light condition allows user to set the backlight current to optimal level thus saving power especially in low light and bright sunlight condition.

30008541
ASE Input Configuration for Light Measurement

ADC Code vs Input Current in Light Measurement Mode

TEMPERATURE MEASUREMENT

The temperature measurement requires two external components: resistor and thermistor (resistor that has known temperature vs resistance curve). The ADC reads the voltage level at ASE pin and converts the result into a digital word. User can read the ADC output from register. The known temperature allows for example to monitor the temperature inside the display module and decrease the current level of the LEDs if temperature raises too high. This function may increase lifetime of LEDs in some applications.

ADC Code vs Input Voltage in temperature measurement mode

Example curve for thermistor

7V Shielding

To shield LP39542 from high input voltages 6...7.2V the use of external 2.8 V LDO is required. This 2.8 V voltage protects internally the device against high voltage condition. The rec-
ommended connection is as shown in the picture below. Internally both logic and analog circuitry works at 2.8 V supply voltage. Both supply voltage pins should have separate filtering capacitors.

In cases where high voltage is not an issue the connection is as shown below

30008545

Logic Interface Electrical Characteristics

(1.65V $\leq \mathrm{V}_{\mathrm{DDIO}} \leq \mathrm{V}_{\mathrm{DD} 1,2} \mathrm{~V}$) (Unless otherwise noted).

Symbol	Parameter	Conditions	Min	Typ	Max	Units
LOGIC INPUTS ADDR_SEL, NRST, SCL, SYNC_PWM, FLASH_EN, SDA						
$\mathrm{V}_{\text {IL }}$	Input Low Level				$0.2 \times \mathrm{V}_{\text {DDIO }}$	V
V_{IH}	Input High Level		$0.8 \times \mathrm{V}_{\text {DDIO }}$			V
I_{L}	Logic Input Current		-1.0		1.0	$\mu \mathrm{A}$
${ }^{\mathrm{f}_{\text {SCL }}}$	Clock Frequency				400	kHz
LOGIC OUTPUT SDA						
V_{OL}	Output Low Level	$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$		0.3	0.5	V
$\underline{\text { IL }}$	Output Leakage Current	$\mathrm{V}_{\text {SDA }}=2.8 \mathrm{~V}$			1.0	$\mu \mathrm{A}$

Note: Any unused digital input pin has to be connected to GND to avoid floating and extra current consumption.

I2C Compatible Interface

interface bus overview

The $I^{2} \mathrm{C}$ compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bi-directional communications between the devices connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). These lines should be connected to a positive supply, via a pull-up resistor and remain HIGH even when the bus is idle. Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock (SCL).

DATA TRANSACTIONS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

${ }^{2}$ C C DATA VALIDITY

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

${ }^{12} \mathrm{C}$ Signals: Data Validity

${ }^{12} \mathrm{C}$ START AND STOP CONDITIONS

START and STOP bits classify the beginning and the end of the ${ }^{2} \mathrm{C}$ session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH.

STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The ${ }^{2} \mathrm{C}$ master always generates START and STOP bits. The ${ }^{2}{ }^{2} \mathrm{C}$ bus is considered to be busy after START condition and free after STOP condition. During data transmission, I2C master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

TRANSFERRING DATA

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.
After the START condition, the I ${ }^{2} \mathrm{C}$ master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LP39542 address is 54 h or 55 H as selected with ADDR_SEL pin. I2C address for LP39542 is 54 H when ADDR_SEL=0 and 55 H when ADDR_SEL=1. For the eighth bit, a "0" indicates a WRITE and a " 1 " indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

${ }^{12} \mathrm{C}$ Chip Address

3000855

Register changes take an effect at the SCL rising edge during the last ACK from slave.

$w=$ write (SDA = "0")
$r=\operatorname{read}(S D A=" 1 ")$
ack = acknowledge (SDA pulled down by either master or slave)
rs = repeated start
id = 7-bit chip address, 54H (ADDR_SEL=0) or 55H (ADDR_SEL=1) for LP39542.
I2C Write Cycle

When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle waveform.

I2C Timing Parameters

$V_{D D 1,2}=3.0$ to $4.5 \mathrm{~V}, V_{D D _10}=1.65 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 1,2}$

Symbol Parameter		Limit		Units
		Min	Max	
1	Hold Time (repeated) START Condition	0.6		$\mu \mathrm{~s}$
2	Clock Low Time	1.3		$\mu \mathrm{~s}$
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time (Output direction, delay generated by LP39542)	300	900	ns
5	Data Hold Time (Input direction, delay generated by the Master)	0	900	ns
6	Data Setup Time	100	ns	
7	Rise Time of SDA and SCL	$20+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
8	Fall Time of SDA and SCL	$15+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
9	Set-up Time for STOP condition	600		ns
10	Bus Free Time between a STOP and a START Condition	1.3		$\mu \mathrm{~s}$
C_{b}	Capacitive Load for Each Bus Line	10	200	pF

NOTE: Data guaranteed by design
Autoincrement mode is available, with this mode it is possible to read or write bytes with autoincreasing addresses. LP39542 has empty spaces in address register map, and it is recommended to use autoincrement mode only for writing in pattern command registers.

Recommended External Components

OUTPUT CAPACITOR, $\mathrm{C}_{\text {out }}$
The output capacitor $\mathrm{C}_{\mathrm{OUT}}$ directly affects the magnitude of the output ripple voltage. In general, the higher the value of $\mathrm{C}_{\text {OUT }}$, the lower the output ripple magnitude. Multilayer ceramic capacitors with low ESR are the best choice. At the lighter loads, the low ESR ceramics offer a much lower Vout ripple that the higher ESR tantalums of the same value. At the higher loads, the ceramics offer a slightly lower Vout ripple magnitude than the tantalums of the same value. However, the $\mathrm{dv} / \mathrm{dt}$ of the Vout ripple with the ceramics is much lower than the tantalums under all load conditions. Capacitor voltage rating must be sufficient, 10 V or greater is recommended.
Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction with the increased applied DC voltage, so called DC bias effect. The capacitance value can fall to below half of the nominal capacitance. Too low output capacitance will increase noise and it can make the boost converter unstable. Recommended maximum DC bias effect at 5 V DC voltage is -50%.

INPUT CAPACITOR, $\mathrm{C}_{\text {IN }}$

The input capacitor $\mathrm{C}_{\text {IN }}$ directly affects the magnitude of the input ripple voltage and to a lesser degree the $\mathrm{V}_{\text {OUT }}$ ripple. A higher value $\mathrm{C}_{\mathbb{I N}}$ will give a lower $\mathrm{V}_{\mathbb{I N}}$ ripple. Capacitor voltage rating must be sufficient, 10 V or greater is recommended.

OUTPUT DIODE, D_{1}

A schottky diode should be used for the output diode. Peak repetitive current rating of the schottky diode should be larger
than the peak inductor current (ca. 1A). Average current rating of the schottky diode should be higher than maximum output current (400 mA). Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse breakdown of the schottky diode larger than the output voltage. Do not use ordinary rectifier diodes, since slow switching speeds and long recovery times cause the efficiency and the load regulation to suffer.

INDUCTOR, L_{1}

The LP39542's high switching frequency enables the use of the small surface mount inductor. A $4.7 \mu \mathrm{H}$ shielded inductor is suggested for 2 MHz operation, $10 \mu \mathrm{H}$ should be used at 1 MHz . The inductor should have a saturation current rating higher than the peak current it will experience during circuit operation (ca. 1A). Less than $300 \mathrm{~m} \Omega$ ESR is suggested for high efficiency. Open core inductors cause flux linkage with circuit components and interfere with the normal operation of the circuit. This should be avoided. For high efficiency, choose an inductor with a high frequency core material such as ferrite to reduce the core losses. To minimize radiated noise, use a toroid, pot core or shielded core inductor. The inductor should be connected to the SW pin as close to the IC as possible. Examples of suitable inductors are: TDK VLF4012AT-4R7M1R1 and Panasonic ELLVEG4R7N.

LIST OF RECOMMENDED EXTERNAL COMPONENTS

Symbol	Symbol explanation	Value	Unit	Type
$\mathrm{C}_{\text {VDD1 }}$	C between VDD1 and GND	100	nF	Ceramic, X7R / X5R
$\mathrm{C}_{\text {VDD2 }}$	C between VDD2 and GND	100	nF	Ceramic, X7R / X5R
$\mathrm{C}_{\text {VDDIO }}$	C between VDDIO and GND	100	nF	Ceramic, X7R / X5R
$\mathrm{C}_{\text {VIDA }}$	C between VDDA and GND	1	$\mu \mathrm{F}$	Ceramic, X7R / X5R
$\mathrm{C}_{\text {OUT }}$	C between FB and GND	10	$\mu \mathrm{F}$	Ceramic, X7R / X5R, 10V
$\mathrm{C}_{\text {IN }}$	C between battery voltage and GND	10	$\mu \mathrm{F}$	Ceramic, X7R / X5R
L_{1}	L between SW and $\mathrm{V}_{\text {BAT }}$ at 2 MHz	4.7	$\mu \mathrm{H}$	Shielded, low ESR, Isat 1A
$\mathrm{C}_{\text {VREF }}$	C between $\mathrm{V}_{\text {REF }}$ and GND	100	nF	Ceramic, X7R
$\mathrm{C}_{\text {VDDIO }}$	C between $\mathrm{V}_{\text {DDIO }}$ and GND	100	nF	Ceramic, X7R
$\mathrm{R}_{\text {FLASH }}$	R between $\mathrm{I}_{\text {FLASH }}$ and GND	1.2	k Ω	$\pm 1 \%$
$\mathrm{R}_{\text {RBG }}$	R between $I_{\text {RGB }}$ and GND	5.6	k Ω	$\pm 1 \%$
R_{RT}	R between $\mathrm{I}_{\text {RT }}$ and GND	82	k Ω	$\pm 1 \%$
D_{1}	Rectifying Diode (Vf @ maxload)	0.3	V	Schottky diode
$\mathrm{C}_{\text {ASE }}$	C between Audio input and ASE	100	nF	Ceramic, X7R / X5R
LEDs		User defined		
$\mathrm{D}_{\text {LIGHT }}$	Light Sensor	TDK BSC2015		

Application Examples
EXAMPLE 1

_ MAIN BACKLIGHT
_ SUB BACKLIGHT
_ AUDIO SYNCHRONIZED FUNLIGHTS
_ RGB INDICATION LIGHT
_ FLASH LED
FLIP PHONE

_ KEYPAD LIGHTS
_ RGB INDICATION LED
_ WHITE SINGLE LED FLASH
_ TEMPERATURE SENSOR
SMART PHONE

_ MAIN BACKLIGHT
_ KEYPAD LIGHTS
_ AUDIO SYNCHRONIZED FUNLIGHTS
_ VIBRA
CANDYBAR PHONE
\qquad MAIN BACKLIGHTSUB BACKLIGHT
\qquad AUDIO SYNCHRONIZED FUNLIGHTS

- RGB INDICATION LIGHT

There may be cases where the audio input signal going into the LP39542 is too weak for audio synchronization. This figure presents a single-supply inverting amplifier connected to the ASE input for audio signal amplification. The amplification is +20 dB , which is well enough for 20 mVp -p audio signal. Because the amplifier (LMV321) is operating in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the input signal is within the input common-mode voltage range of the amplifier. The capacitor C 1 is placed between the inverting input and resistor R1 to block the DC signal going into the audio signal source. The values of R 1 and C 1 affect the cutoff frequency, $\mathrm{fc}=1 /\left(2 \pi^{*} \mathrm{R} 1^{*} \mathrm{C} 1\right)$, in this case it is around 160 Hz . As a result, the LMV321 output signal is centered around mid-supply, that is $\mathrm{V}_{\mathrm{DDA}} / 2$. The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system

USING EXTRA AMPLIFIER

- MAIN BACKLIGHT
_ SUB BACKLIGHT
_ AUDIO SYNCHRONIZED FUNLIGHTS
_ RGB INDICATION LIGHT
Here, a second order RC-filter is used on the ASE input to convert a PWM signal to an analog waveform.
USING PWM SIGNAL
More application information is available in the document "LP39542 Evaluation Kit".
LP39542 Control Register Names and Default Values

ADDR (HEX)	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
00	RGB Ctrl	cc_rgb1	cc_rgb2	r1sw	g1sw	b1sw	r2sw	g2sw	b2sw
		1	1	0	0	0	0	0	0
01	R1 blink	r1_on[3]	r1_on[2]	r1_on[1]	r1_on[0]	r1_off[3]	r1_off[2]	r1_off[1]	r1_off[0]
		0	0	0	0	0	0	0	0
02	R1 cycle					r1_cycle en	r1_cycle[2]	r1_cycle[1]	r1_cycle[0]
						0	0	0	0
03	G1 blink	g1_on[3]	g1_on[2]	g1_on[1]	g1_on[0]	g1_off[3]	g1_off[2]	g1_off[1]	g1_off[0]
		0	0	0	0	0	0	0	0
04	G1 cycle					g1_cycle en	g1_cycle[2]	g1_cycle[1]	g1_cycle[0]
						0	0	0	0
05	B1 blink	b1_on[3]	b1_on[2]	b1_on[1]	b1_on[0]	b1_off[3]	b1_off[2]	b1_off[1]	b1_off[0]
		0	0	0	0	0	0	0	0
06	B1 cycle					b1_cycle en	b1_cycle[2]	b1_cycle[1]	b1_cycle[0]
						0	0	0	0
07	Ext. PWM control	wled1_4 pwm	wled5_6 pwm	r1_pwm	g1_pwm	b1_pwm	r2_pwm	g2_pwm	b2_pwm
		0	0	0	0	0	0	0	0
08	WLED control		slope_w5_6	slope_w1_4	en_fade_w5_6	en_fade_w1_4	displ	en_w1_4	en_w5_6
			0	0	0	0	0	0	0
09	WLED1-4	wled1_4[7:0]							
		0	0	0	0	0	0	0	0
OA	WLED5-6	wled5_6[7:0]							
		0	0	0	0	0	0	0	0
OB	Enables	pwm_ sync	nstby	en_ boost			en_ autoload	rgb_sel[1:0]	
		0	0	0			1	0	0
OC	ADC output	data[7:0]							
		0	0	0	0	0	0	0	0
OD	Boost output	boost[7:0]							
		0	0	1	1	1	1	1	1
OE	Boost_frq						freq_sel[2:0]		
							1	1	1

$\begin{aligned} & \hline \text { ADDR } \\ & \text { (HEX) } \end{aligned}$	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
10	HC_Flash		en_safety	hc_pwm	fl_t[1:0]		hc[1:0]		en_ hcflash
			0	0	0	0	0	0	0
11	Pattern gen ctrl						rgb_start	loop	\log
							0	0	0
12	RGB1 max current			ir1[1:0]		ig1[1:0]		ib1[1:0]	
				0	0	0	0	0	0
13	RGB2 max current			ir2[1:0]		ig2[1:0]		ib2[1:0]	
				0	0	0	0	0	0
2A	Audio sync CTRL1	gain_sel[2:0]			sync_mode	en_agc	en_sync	input_sel[1:0]	
		0	0	0	0	0	0	1	1
2B	Audio sync CTRL2				en_avg	mode_ctrl[1:0]		speed_ctrl[1:0]	
					0	0	0	0	0
50	Command 1A	r [2:0]			g[2:0]			cet[3:2]	
		0	0	0	0	0	0	0	0
51	Command 1B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0
52	Command 2A	r[2:0]			g[2:0]			cet[3:2]	
		0	0	0	0	0	0	0	0
53	Command 2B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0
54	Command 3A	r [2:0]			g[2:0]			cet[3:2]	
		0	0	0	0	0	0	0	0
55	Command 3B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0
56	Command 4A	r[2:0]			g[2:0]			cet[3:2]	
		0	0	0	0	0	0	0	0
57	Command 4B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0
58	Command 5A	r [2:0]			g[2:0]			cet[3:2]	
		0	0	0	0	0	0	0	0
59	Command 5B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0

ADDR (HEX)	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
5A	Command 6A	r[2:0]			g[2:0]			cet[3:2]	
		0	0	0	0	0	0	0	0
5B	Command 6B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0
5C	Command 7A	$\mathrm{r}[2: 0]$			$\mathrm{g}[2: 0]$			cet[3:2]	
		0	0	0	0	0	0	0	0
5D	Command 7B	cet[1:0]		$\mathrm{b}[2: 0]$			tt[2:0]		
		0	0	0	0	0	0	0	0
5E	Command 8A	$\mathrm{r}[2: 0]$			$\mathrm{g}[2: 0]$			cet[3:2]	
		0	0	0	0	0	0	0	0
5 F	Command 8B	cet[1:0]		b [2:0]			tt[2:0]		
		0	0	0	0	0	0	0	0
60	Reset	Writing any data to Reset Register resets LP39542							

LP39542 Registers

REGISTER BIT EXPLANATIONS

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition:
Register Bit Accessibility and Initial Condition

Key	Bit Accessibility
$r w$	Read/write
r	Read only
$-0,-1$	Condition after POR

RGB CTRL ($\mathbf{(0 0 H) ~ - ~ R G B ~ L E D S ~ C O N T R O L ~ R E G I S T E R ~}$

D7	D6	D5	D4	D3	D2	D1	D0
cc_rgb1	cc_rgb2	r1sw	g1sw	b1sw	r2sw	g2sw	b2sw
$\mathrm{rw-1}$	$\mathrm{rw}-1$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$

cc_rgb1	Bit 7	0 - R1, G1 and B1 are constant current sinks, current limited internally 1 - R1, G1 and B1 are switches, limit current with external ballast resistor
cc_rgb2	Bit 6	$0-$ R2, G2 and B2 are constant current sinks, current limited internally 1 - R2, G2 and B2 are switches, limit current with external ballast resistor
r1sw	Bit 5	0-R1 disabled 1-R1 enabled
g1sw	Bit 4	0-G1 disabled 1-G1 enabled
b1sw	Bit 3	0 - B1 disabled 1-B1 enabled
r2sw	Bit 2	0 - R2 disabled 1-R2 enabled
g2sw	Bit 1	$\begin{aligned} & 0-\mathrm{G} 2 \text { disabled } \\ & 1-\mathrm{G} 2 \text { enabled } \end{aligned}$
b2sw	Bit 0	0 - B2 disabled 1-B2 enabled

R1/G1/B1 BLINK (01H, 03H, 05H) - BLINKING ON/OFF TIME CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
R1/G1/B1_ON[3:0]							
rw-0	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	rw -0

	Bits 7-4, 3-0		time
		Bits	ON/OFF time
		0000	0\%
		0001	1\%
		0010	2.5\%
		0011	5\%
R1_ON[3:0], R1_OFF[3:0] G1_ON[3:0], G1_OFF[3:0] B1_ON[3:0], B1_OFF[3:0]		0100	7.5\%
		0101	10\%
		0110	15\%
		0111	20\%
		1000	30\%
		1001	40\%
		1010	50\%
		1011	60\%
		1100	70\%
		1101	80\%
		1110	90\%
		1111	100\%

R1/G1/B1 CYCLE(02H, 04H, 06H) - BLINKING CYCLE CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
				R1/G1/ B1_CYCLE_EN	R1/G1/B1_CYCLE[2:0]		
$r-0$	$r-0$	$r-0$	$r-0$	$r w-0$	$r w-0$	$r w-0$	$r w-0$

R1_CYCLE EN G1_CYCLE_EN B1_CYCLE EN	Bit 3	$\begin{aligned} & \text { Blinking enable } \\ & 0=\text { disabled, output state is defined with RGB registers } \\ & 1=\text { enabled, output state is defined with blinking cycle } \\ & \hline \end{aligned}$		
R1_CYCLE[2:0] G1_CYCLE[2:0] B1_CYCLE[2:0]	Bits 2-0	RGB1 cycle time		
		Bits	Blinking cycle time	Blinking frequency
		000	0.1s	10 Hz
		001	0.25s	4 Hz
		010	0.5s	2 Hz
		011	1s	1 Hz
		100	2s	0.5 Hz
		101	3s	0.33 Hz
		110	4 s	0.25 Hz
		111	5s	0.2 Hz

EXT_PWM_CONTROL (07H) - EXTERNAL PWM CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
wled1_4_pwm	wled5_6_pwm	r1_pwm	g1_pwm	b1_pwm	r2_pwm	g2_pwm	b2_pwm
rw-0							

wled1_4_pwm	Bit 7	0 - WLED1...WLED4 PWM control disabled 1 - WLED1...WLED4 PWM control enabled
wled5_6_pwm	Bit 6	0 - WLED5, WLED6 PWM control disabled 1 - WLED5, WLED6 PWM control enabled
r1_pwm	Bit 5	0-R1 PWM control disabled 1-R1 PWM control enabled
g1_pwm	Bit 4	0 - G1 PWM control disabled 1 - G1 PWM control enabled
b1_pwm	Bit 3	0 - RB PWM control disabled 1-B1 PWM control enabled
r2_pwm	Bit 2	0 - R2 PWM control disabled 1 - R2 PWM control enabled
g2_pwm	Bit 1	0 - G2 PWM control disabled 1 - G2 PWM control enabled
b2_pwm	Bit 0	0 - B2 PWM control disabled 1 - B2 PWM control enabled

WLED CONTROL (08H) - WLED CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	slope_w5_6	slope_w1_4	en_fade_w5_6	en_fade_w1_4	displ	en_w1_4	en_w5_6
$\mathrm{r}-0$	$\mathrm{rw}-0$						

slope_w5_6	Bit 6	0 - WLED5-6 full range fade execution time 1.3s 1 - WLED5-6 full range fade execution time 0.65 s
slope_w1_4	Bit 5	0 - WLED1-4 full range fade execution time 1.3 s 1 - WLED1-4 full range fade execution time 0.65 s
en_fade_w5_6	Bit 4	0 - disable fade for WLED5-6 1 - enable fade for WLED5-6
en_fade_w1_4	Bit 3	0 - disable fade for WLED1-4 1 - enable fade for WLED1-4
displ	Bit 2	0 - WLED1-4 and WLED5-6 are controlled separately 1 - WLED1-4 and WLED5-6 are controlled with WLED1-4 controls
en_w1_4	Bit 1	0 - WLED1-4 disabled 1-WLED1-4 enabled
en_w5_6	Bit 0	0-WLED5-6 disabled 1 - WLED5-6 enabled

WLED1-4 (09H) - WLED1...WLED4 BRIGHTNESS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
wled1_4[7:0]							
$\mathrm{rw}-0$							

| | Adjustment | |
| :---: | :---: | :---: | :---: |
| | wled1_4[7:0] | Typical driver current (mA) |
| | 00000000 | 0 |
| | 00000001 | 0.1 |
| | 00000010 | 0.2 |
| | 00000011 | 0.3 |
| | 00000100 | 0.4 |
| | \ldots | \ldots |
| | 11111101 | 25.3 |
| | 11111110 | 25.4 |
| | 11111111 | 25.5 |

WLED5-6 (0AH) - WLED5, WLED6 BRIGHTNESS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
wled5_6[7:0]							
$\mathrm{rw}-0$							

| | Adjustment | |
| :---: | :---: | :---: | :---: |
| | wled5_6[7:0] | Typical driver current (mA) |
| | 00000000 | 0 |
| | 00000001 | 0.1 |
| | 00000010 | 0.2 |
| | 00000011 | 0.3 |
| | 00000100 | 0.4 |
| | \ldots | \ldots |
| | 11111101 | 25.3 |
| | 11111110 | 25.4 |
| | 11111111 | 25.5 |

ENABLES (OBH) - ENABLES REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
pwm_sync	nstby	en_boost					
$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{r}-0$	$\mathrm{r}-0$	$\mathrm{rw}-1$	$\mathrm{rw}-0$	$\mathrm{rw}-0$

pwm_sync	Bit 7	0 - synchronization to external clock disabled 1 - synchronization to external clock enabled			
nstby	Bit 6	0 - LP39542 standby mode 1 - LP39542 active mode			
en_boost	Bit 5	0 - boost converter disabled 1 - boost converter enabled			
en_autoload	Bit 2	0 - internal boost converter loader off 1 - internal boost converter loader on			
rgb_sel[1:0]	Bits 1-0	Color LED control mode selection			
		rgb_sel[1:0]	Audio sync	Pattern generator	Blinking sequence
		00	-	RGB1 \& RGB2	-
		01	-	RGB2	RGB1
		10	RGB2	RGB1	-
		11	RGB1 \& RGB2	-	-

ADC_OUTPUT (OCH) - ADC DATA REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
data[7:0]							
$r-0$	$\mathrm{r}-0$						

data[7:0]	Bits 7-0	Data register ADC (Audio input, light or temperature sensors)

BOOST_OUTPUT (ODH) - BOOST OUTPUT VOLTAGE CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
Boost[7:0]							
$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-1$	$\mathrm{rw}-1$	$\mathrm{rw}-1$	$\mathrm{rw}-1$	$\mathrm{rw}-1$	$\mathrm{rw}-1$

Boost[7:0]	Bits 7-0	Adjustment	
		Boost[7:0]	Typical boost output (V)
		00000000	4.00
		00000001	4.25
		00000011	4.40
		00000111	4.55
		00001111	4.70
		00011111	4.85
		00111111	5.00 (default)
		01111111	5.15
		11111111	5.30

BOOST_FRQ (0EH) - BOOST FREQUENCY CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
freq_sel[2:0]							
$r-0$	$\mathrm{r}-0$	$\mathrm{r}-0$	$\mathrm{r}-0$	$\mathrm{r}-0$	$\mathrm{rw}-1$	$\mathrm{rw}-1$	$\mathrm{rw-1}$

freq_sel[2:0]	Adjustment		
	Bits 7-0	freq_sel[2:0]	Frequency
		$1 x x$	2.00 MHz
		01 x	1.67 MHz
		00 x	1.00 MHz

HC_FLASH (10H) - HIGH CURRENT FLASH DRIVER CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	en_safety	hc_pwm	fl_t[1:0]		hc[1:0]		en_hcflash
$r-0$	$r w-0$						

en_safety	Bit 6	0 - flash timeout feature disabled 1 - flash timeout feature enabled	
hc_pwm	Bit 5	0 - ext. PWM for high current flash driver disabled 1 - ext. PWM for high current flash driver enabled	
fl_t[1:0]	Bits 4-3	Flash duration for high current driver	
		fl_t[1:0]	Typical flash duration
		00	200 ms
		01	400 ms
		10	600 ms
		11	EN_FLASH pin on duration
hc[1:0]	Bits 2-1	Current control for high current flash driver	
		hc[1:0]	current
		00	$0.25 \times 1_{\text {MAX(FLASH) }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX(FLASH) }}$
		10	$0.75 \times \mathrm{I}_{\text {MAX(FLASH) }}$
		11	$1.00 \times \mathrm{I}_{\text {MAX (FLASH) }}$
en_hcflash	Bit 0	$\begin{aligned} & \hline 0 \text { - high cu } \\ & 1 \text { - high cur } \end{aligned}$	driver disabled driver enabled

PATTERN_GEN_CTRL (11H) - PATTERN GENERATOR CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
r-0	$r-0$	$r-0$	$r-0$	en_blink	rgb_start	loop	log

en_blink	Bit 3	0 - blinking sequences start bit disabled 1 - blinking sequences start bit enabled
rgb_start	Bit 2	0 - pattern generator disabled 1 - execution pattern starting from command 1
loop	Bit 1	0 - pattern generator loop disabled (single pattern) 1 - pattern generator loop enabled (execute until stopped)
\log	Bit 0	0 - color intensity mode 0 1 - color intensity mode 1

RGB1_MAX_CURRENT (12H) - RGB1 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0					
ir1[1:0]									ig1[1:0]		ib1[1:0]	
$r-0$	$\mathrm{r}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$					

ir1[1:0]	Bits 5-4	Maximum current for R1 driver	
		ir1[2:0]	Maximum output current
		00	$0.25 \times \mathrm{I}_{\text {MAX }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX }}$
		10	$0.75 \times \mathrm{I}_{\text {MAX }}$
		11	$1.00 \times \mathrm{I}_{\text {MAX }}$
ig1[1:0]	Bits 3-2	Maximum current for G1 driver	
		ig2[1:0]	Maximum output current
		00	$0.25 \times \mathrm{I}_{\text {MAX }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX }}$
		10	$0.75 \times \mathrm{I}_{\text {MAX }}$
		11	$1.00 \times \mathrm{I}_{\text {MAX }}$
ib1[1:0]	Bits 1-0	Maximum current for B1 driver	
		ib1[1:0]	Maximum output current
		00	$0.25 \times \mathrm{I}_{\text {MAX }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX }}$
		10	$0.75 \times 1_{\text {MAX }}$
		11	$1.00 \times \mathrm{I}_{\text {MAX }}$

RGB2_MAX_CURRENT (13H) - RGB2 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0					
ir2[1:0]									ig2[1:0]		ib2[1:0]	
$\mathrm{r}-0$	$\mathrm{r}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$					

ir2[1:0]	Bits 5-4	Maximum current for R2 driver	
		ir2[2:0]	Maximum output current
		00	$0.25 \times 1_{\text {MAX }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX }}$
		10	$0.75 \times \mathrm{I}_{\text {MAX }}$
		11	$1.00 \times{ }_{\text {max }}$
ig2[1:0]	Bits 3-2	Maximum current for G2 driver	
		ig2[1:0]	Maximum output current
		00	$0.25 \times \mathrm{I}_{\text {MAX }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX }}$
		10	$0.75 \times \mathrm{I}_{\text {MAX }}$
		11	$1.00 \times{ }_{\text {max }}$
ib2[1:0]	Bits 1-0	Maximum current for B2 driver	
		ib2[1:0]	Maximum output current
		00	$0.25 \times \mathrm{I}_{\text {MAX }}$
		01	$0.50 \times \mathrm{I}_{\text {MAX }}$
		10	$0.75 \times \mathrm{I}_{\text {MAX }}$
		11	$1.00 \times{ }_{\text {max }}$

AUDIO_SYNC_CTRL1 (2AH) - AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 1

D7	D6	D5	D4	D3	D2	D1	D0
gain_sel[2:0]			sync_mode	en_agc	en_sync	input_sel[1:0]	
$\mathrm{rw-0}$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-1$	$\mathrm{rw-1}$

gain_sel[2:0]	Bits 7-5	Input signal gain control	
		gain_sel[2:0]	gain, dB
		000	0 (default)
		001	3
		010	6
		011	9
		100	12
		101	15
		110	18
		111	21
sync_mode	Bit 4	Input filter mode control 0 - Amplitude mode 1 - Frequency mode	
en_agc	Bit 3	0 - automatic gain control disabled 1 - automatic gain control enabled	
en_sync	Bit 2	0 - audio synchronization disabled 1 - audio synchronization enabled	
input_sel[1:0]	Bits 1-0	ADC input selector	
		input_sel[1:0]	Input
		00	Single ended input signal (ASE)
		01	Temperature measurement
		10	Ambient light measurement
		11	No input (default)

AUDIO_SYNC_CTRL2 (2BH) - AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 2

D7	D6	D5	D4	D3	D2	D1	D0						
									en_avg	mode_ctrl[1:0]		speed_ctrl[1:0]	
$r-0$	$\mathrm{r}-0$	$\mathrm{r}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$						

en_avg	Bit 4	0 - averaging disabled. $\mathrm{f}_{\text {sample }}=122 \mathrm{~Hz}$, data in register changes every 8.2 ms . 1 - averaging enabled. $\mathrm{f}_{\text {sample }}=244 \mathrm{~Hz}$, averaging of 64 samples, data in register changes every 262 ms (3.2Hz).	
mode_ctrl[1:0]	Bits 3-2	Filtering mode control	
speed_ctrl[1:0]	Bits 1-0	LEDs light response time to audio input	
		speed_ctrl[1:0]	Response
		00	FASTEST (default)
		01	FAST
		10	MEDIUM
		11	SLOW

PATTERN CONTROL REGISTERS

Command_[1:8]A - Pattern Control Register A										
D7	D6	D5	D4	D3	D2	D1	D0			
$\mathrm{g}[2: 0]$									cet[3:2]	
$\mathrm{rw}-0$	$\mathrm{r}[2: 0]$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$			
rmw										

Command_[1:8]B - Pattern Control Register B											
D7	D6	D5	D4	D3	D2	D1	D0				
cet[1:0]		$\mathrm{b}[2: 0]$								$\mathrm{rt}[2: 0]$	
$\mathrm{rw}-0$		$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$	$\mathrm{rw}-0$				

r[2:0]	$\begin{gathered} \text { Bits } \\ 7-5 \mathrm{~A} \end{gathered}$	Red color intensity		
		r[2:0]	current, \%	
			$\boldsymbol{l o g}=0$	$\log =1$
		000	0×1 MAX	$0 \times{ }_{\text {max }}$
		001	$7 \% \times\left.\right\|_{\text {MAX }}$	$1 \% \times\left.\right\|_{\text {MAX }}$
		010	$14 \% \times\left.\right\|_{\text {MAX }}$	$2 \% \times\left.\right\|_{\text {MAX }}$
		011	$21 \% \times \mathrm{I}_{\text {MAX }}$	$4 \% \times{ }_{\text {MAX }}$
		100	$32 \% \times \mathrm{I}_{\text {MAX }}$	$10 \% \times \mathrm{I}_{\text {MAX }}$
		101	$46 \% \times 1_{\text {MAX }}$	$21 \% \times \mathrm{I}_{\text {MAX }}$
		110	$71 \% \times \mathrm{I}_{\text {MAX }}$	$46 \% \times\left.\right\|_{\text {MAX }}$
		111	$100 \% \times{ }_{\text {MAX }}$	$100 \% \times{ }_{\text {MAX }}$
$\mathrm{g}[2: 0]$	$\begin{aligned} & \text { Bits } \\ & 4-2 A \end{aligned}$	Green color intensity		
		g[2:0]	current, \%	
			$\boldsymbol{l o g}=0$	$\log =1$
		000	$0 \times\left.\right\|_{\text {MAX }}$	$0 \times \mathrm{I}_{\text {MAX }}$
		001	$7 \% \times \mathrm{I}_{\text {MAX }}$	$1 \% \times \mathrm{I}_{\text {MAX }}$
		010	$14 \% \times\left.\right\|_{\text {MAX }}$	$2 \% \times\left.\right\|_{\text {MAX }}$
		011	$21 \% \times \mathrm{I}_{\text {MAX }}$	$4 \% \times\left.\right\|_{\text {MAX }}$
		100	$32 \% \times 1_{\text {MAX }}$	$10 \% \times\left.\right\|_{\text {MAX }}$
		101	$46 \% \times 1_{\text {MAX }}$	$21 \% \times \mathrm{I}_{\text {MAX }}$
		110	$71 \% \times \mathrm{I}_{\text {MAX }}$	$46 \% \times\left.\right\|_{\text {MAX }}$
		111	$100 \% \times{ }_{\text {MAX }}$	$100 \% \times{ }_{\text {MAX }}$

cet[3:0]	$\begin{aligned} & \text { Bits } \\ & 1-0 A \\ & 7-6 B \end{aligned}$	Command execution time		
		cet[3:0]	CET duration, ms	
		0000	197	
		0001	393	
		0010	590	
		0011	786	
		0100	983	
		0101	1180	
		0110	1376	
		0111	1573	
		1000	1769	
		1001	1966	
		1010	2163	
		1011	2359	
		1100	2556	
		1101	2753	
		1110	2949	
		1111	3146	
b[2:0]	$\begin{gathered} \text { Bits } \\ 5-3 B \end{gathered}$	Blue color intensity		
		b[2:0]	current, \%	
			$\mathbf{l o g}=0$	$\log =1$
		000	$0 \times \mathrm{I}_{\text {max }}$	$0 \times{ }_{\text {max }}$
		001	$7 \% \times 1_{\text {MAX }}$	$1 \% \times{ }_{\text {MAX }}$
		010	$14 \% \times \mathrm{I}_{\text {max }}$	$2 \% \times\left.\right\|_{\text {MAX }}$
		011	$21 \% \times \mathrm{I}_{\text {MAX }}$	$4 \% \times\left.\right\|_{\text {MAX }}$
		100	$32 \% \times{ }_{\text {MAX }}$	$10 \% \times{ }_{\text {MAX }}$
		101	$46 \% \times \mathrm{I}_{\text {MAX }}$	$21 \% \times \mathrm{I}_{\text {MAX }}$
		110	$71 \% \times \mathrm{I}_{\text {MAX }}$	$46 \% \times\left.\right\|_{\text {MAX }}$
		111	$100 \% \times{ }_{\text {MAX }}$	$100 \% \times{ }_{\text {MAX }}$
tt[2:0]	$\begin{gathered} \text { Bits } \\ 2-0 B \end{gathered}$	Transition time		
		tt[2:0]	Transition time, ms	
		000	0	
		001	55	
		010	110	
		011	221	
		100	442	
		101	885	
		110	1770	
		111	3539	

RESET (60H) - RESET REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
Writing any data to Reset Register in address 60H can reset LP39542							
$\mathrm{w}-0$							

Physical Dimensions inches (millimeters) unless otherwise noted

The dimension for $\mathrm{X} 1, \mathrm{X} 2$ and X 3 are as given:
_ $\mathrm{X} 1=3.00 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
— $\mathrm{X} 2=3.00 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
— $X 3=0.60 \mathrm{~mm} \pm 0.075 \mathrm{~mm}$
36-bump micro SMD Package, $3 \times 3 \times 0.6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch NS Package Number TLA36AAA

The dimension for $\mathrm{X} 1, \mathrm{X} 2$ and X 3 are as given:
_ $\mathrm{X} 1=3.00 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
_ X2=3.00 mm $\pm 0.03 \mathrm{~mm}$
— $X 3=0.65 \mathrm{~mm} \pm 0.075 \mathrm{~mm}$
36-bump micro SMDxt Package, $3 \times 3 \times 0.65 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch NS Package Number RLA36AAA

See Application notes AN-1112 and AN-1412 for PCB design and assembly instructions.

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com

	National Semiconductor	National Semiconductor Europe	National Semiconductor Asia	National Semiconductor Japan
	Americas Customer	Customer Support Center	Pacific Customer Support Cent	ustomer Support Cent
	Email:	Email: europe.support@ nsc.com		Email: jpn.feedback@nsc.com
	new.feedback@nsc.com	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	Tel: 1-800-272-9959	English Tel: +49 (0) 8702402171		
		Français Tel: +33 (0) 141918790		

