National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LP39542

Advanced Lighting Management Unit

General Description

LP39542 is an advanced lighting management unit for handheld devices. It drives any phone lights including display backlights, RGB, keypad and camera flash LEDs. The boost DC-DC converter drives high current loads with high efficiency. White LED backlight drivers are high efficiency low voltage structures with excellent matching and automatic fade in/ fade out function. The stand-alone command based RGB controller is feature rich and easy to configure. Built-in audio synchronization feature allows user to synchronize the color LEDs to audio input. Integrated high current driver can drive camera flash LED or motor/vibra. Internal ADC can be used for ambient light or temperature sensing. The flexible I²C interface allows easy control of LP39542. Small micro SMD package together with minimum number of external components is a best fit for handheld devices.

Features

- Audio synchronization for color/RGB LEDs
- Command based PWM controlled RGB LED drivers
- Programmable ON/OFF blinking sequences for RGB LED
- High current driver for flash LED with built-in timing and safety feature.
- 4+2 or 6 low voltage constant current white LED drivers with programmable 8-bit adjustment (0...25 mA/LED)
- High efficiency Boost DC-DC converter
- I²C compatible interface
- Possibility for external PWM dimming control
- Possibility for clock synchronization for RGB timing
- Ambient light and temperature sensing possibility
- Small package microSMD-36, 3.0 x 3.0 x 0.6 mm

Applications

- Cellular Phones
- PDAs, MP3 players

Typical Applications

Connection Diagrams and Package Mark Information

CONNECTION DIAGRAMS

MicroSMD-36 Package, 3.0 x 3.0 x 0.6 mm, 0.5 mm pitch NS Package Number TLA36AAA or MicroSMDxt-36 Package, 3.0 x 3.0 x 0.65 mm, 0.5 mm pitch NS Package Number RLA36AAA

30008503

30008504

PACKAGE MARK

XY = 2 Digit Date Code
TT = Die Traceability
D58B = Product Identification
= Pin 1A

30008505

Ordering Information

Order Number	Package Marking	Supplied As	Spec/Flow
LP39542TL	D58B	TNR 250	NoPb
LP39542TLX	D58B	TNR 1000	NoPb
LP39542RL	D58B	TNR 250	NoPb
LP39542RLX	D58B	TNR 1000	NoPb

Pin Descriptions

Pin #	Name	Туре	Description
6F	SW	Output	Boost Converter Power Switch
6E	FB	Input	Boost Converter Feedback
6D	FLASH	Output	High Current Flash Output
6C	R1	Output	Red LED 1 Output
6B	G1	Output	Green LED 1 Output
6A	B1	Output	Blue LED 1 Output
5F	GND_SW	Ground	Power Switch Ground
5E	GND	Ground	Ground
5D	V_{DDIO}	Power	Supply Voltage for Logic Input/Output Buffers and Drivers
5C	SDA	Logic Input/Output	Serial Data In/Out (I ² C)
5B	IRGB	Input	Bias Current Set Resistor for RGB Drivers
5A	GND_RGB	Ground	Ground for RGB Currents
4F	GND_WLED	Ground	Ground for WLED Currents
4E	IFLASH	Input	High Current Flash Current Set Resistor
4D	SYNC_PWM	Logic Input	External PWM Control for LEDs or External Clock for RGB Sync
4C	ADDR_SEL	Logic Input	Address Select (I ² C)
4B	NRST	Logic Input	Reset Pin
4A	R2	Output	Red LED 2 Output
3F	WLED5	Output	White LED 5 Output
3E	WLED6	Output	White LED 6 Output
3D	V_{DD1}	Power	Supply Voltage
3C	FLASH_EN	Logic Input	Enable for High Current Flash
3B	SCL	Logic Input	Clock (I2C)
ЗА	G2	Output	Green LED 2 Output
2F	WLED3	Output	White LED 3 Output
2E	WLED4	Output	White LED 4 Output
2D	ASE	Input	Audio Synchronization Input
2C	IRT	Input	Oscillator Frequency Resistor
2B	GNDT	Ground	Ground
2A	B2	Output	Blue LED 2 Output
1F	WLED1	Output	White LED 1 Output
1E	WLED2	Output	White LED 2 Output
1D	GNDA	Ground	Ground for Analog Circuitry
1C	VREF	Output	Reference Voltage
1B	V_{DDA}	Power	Internal LDO Output
1A	V _{DD2}	Power	Supply Voltage

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ecilications.
-0.3V to +7.2V
-0.3V to +6.0V
-0.3V to V_{DD1} +0.3V with 6.0V max
-0.3V to V_{DDIO} +0.3V with 6.0V max
-0.3V to 6.0V
10 μΑ
100 mA
400 mA
Internally Limited
150°C
-65°C to +150°C
260°C

(Soldering) (Note 7) ESD Rating (Note 8) Human Body Model:

Operating Ratings (Notes 1, 2)

V (SW, FB, WLED1-6, R1-2, G1-2, B1-2, FLASH)	0 to 6.0V
V _{DD1,2} with external LDO	2.7 to 5.5V
V _{DD1,2} with internal LDO	3.0 to 5.5V
V_{DDA}	2.7 to 2.9V
V_{DDIO}	1.65V to V _{DD1}
Voltage on ASE	0.1V to V _{DDA} -0.1V
Recommended Load Current	0 mA to 400 mA
Junction Temperature (T _J) Range	-30°C to +125°C
Ambient Temperature (T _A) Range	-30°C to +85°C
(Note 9)	

Thermal Properties

2 kV

Junction-to-Ambient Thermal	60°C/W
Resistance(θ _{JA}), TLA36AAA or	
RLA36AAA Package	
(Note 10)	

Electrical Characteristics (Notes 2, 11)

Limits in standard typeface are for T_J = 25°C. Limits in **boldface** type apply over the operating ambient temperature range (-30°C < T_A < +85°C). Unless otherwise noted, specifications apply to the LP39542 Block Diagram with: V_{DD1} = V_{DD2} = 3.6V, V_{DDIO} = 2.8V, V_{DDIO} = 100 nF, V_{DDIO} = 100 nF, V_{DDIO} = 100 nF, V_{DDIO} = 100 nF, V_{DDIO} = 10 µF, V_{DDIO} = 100 nF, V_{DDIO} = 100 nF,

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{VDD}	Standby supply current	NSTBY (bit) = L, NRST (pin) = H		1	8	μΑ
	$(V_{DD1} + V_{DD2})$	SCL=H, SDA = H				
	No-boost supply current	NSTBY (bit) = H,			450	μΑ
	$(V_{DD1} + V_{DD2})$	EN_BOOST(bit) = L				
		SCL = H, SDA = H				
		Audio sync and LEDs OFF				
	No-load supply current	NSTBY (bit) = H,			1	mA
	$(V_{DD1} + V_{DD2})$	EN_BOOST (bit) = H				
		SCL = H, SDA = H				
		Audio sync and LEDs OFF				
		Autoload OFF				
	RGB drivers	CC mode at R1, G1, B1 and R2, G2, B2 set to 15 mA		150		μΑ
	$(V_{DD1} + V_{DD2})$	SW mode		150		
	WLED drivers	4+2 banks I _{OUT} = 25.5 mA per LED		500		μΑ
	$(V_{DD1} + V_{DD2})$					
	Audio synchronization	Audio sync ON				
	$(V_{DD1} + V_{DD2})$	$V_{DD1.2} = 2.8V$		390		μA
		$V_{DD1,2} = 3.6V$		700		,
	Flash	I(R _{FLASH}) = 1 mA		2		mA
	$(V_{DD1} + V_{DD2})$	Peak current during flash				
I _{VDDIO}	V _{DDIO} Standby Supply	NSTBY (bit)=L			1	μΑ
	current	SCL = H, SDA = H				
I _{EXT_LDO}	External LDO output	7V tolerant application only			6.5	mA
	current	$I_{BOOST} = 300 \text{ mA}$				
	$(V_{DD1}, V_{DD2}, V_{DDA})$					
V_{DDA}	Output voltage of internal	(Note 13)	2.72	2.80	2.88	V
	LDO for analog parts		-3		+3	%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

- Note 2: All voltages are with respect to the potential at the GND pins.
- Note 3: Battery/Charger voltage should be above 6V no more than 10% of the operational lifetime.
- Note 4: Voltage tolerance of LP39542 above 6.0V relies on fact that V_{DD1} and V_{DD2} (2.8V) are available (ON) at all conditions. If V_{DD1} and V_{DD2} are not available (ON) at all conditions, National Semiconductor does not guarantee any parameters or reliability for this device.
- Note 5: The total load current of the boost converter in worst-case conditions is limited to 300 mA (min. input and max. output voltage).
- Note 6: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at T_J =160°C (typ.) and disengages at T_J =140°C (typ.).
- Note 7: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112: Micro SMD Wafer Level Chip Scale Package or Application note AN1412: Micro SMDxt Wafer Lever Chip Scale Package
- Note 8: The Human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.
- Note 9: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature $(T_{J-MAX-OP} = 125^{\circ}C)$, the maximum power dissipation of the device in the application (P_{D-MAX}) , and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}) , as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} = (\theta_{JA} \times P_{D-MAX})$.
- Note 10: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
- Note 11: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.
- Note 12: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
- Note 13: $V_{\rm DDA}$ output is not recommended for external use.

Modes of Operation

RESET: In the RESET mode all the internal registers are reset to the default values and the chip goes to STANDBY

mode after reset. NSTBY control bit is low after reset by default. Reset is active always if NRST input pin is low or internal Power On Reset is active. LP39542 can be also reset by writing any data to Reset Register in address 60H. Power On Reset (POR) will activate during the chip startup or when the supply voltage V_{DD2} falls below 1.5V. Once V_{DD2} rises above 1.5V, POR will inactivate and the chip will continue to the

STANDBY mode.

STANDBY: The STANDBY mode is entered if the register bit NSTBY is LOW. This is the low power consumption mode,

when all circuit functions are disabled. Registers can be written in this mode and the control bits are effective

immediately after power up.

STARTUP: When NSTBY bit is written high, the INTERNAL STARTUP SEQUENCE powers up all the needed internal

blocks (Vref, Bias, Oscillator etc..). To ensure the correct oscillator initialization, a 10 ms delay is generated by the internal state-machine. If the chip temperature rises too high, the Thermal Shutdown (TSD) disables

the chip operation and STARTUP mode is entered until no thermal shutdown event is present.

BOOST STARTUP: Soft start for boost output is generated in the BOOST STARTUP mode. The boost output is raised in PFM

mode during the 10 ms delay generated by the state-machine. The Boost startup is entered from Internal Startup Sequence if EN_BOOST is HIGH or from Normal mode when EN_BOOST is written HIGH. During

the 10 ms Boost Startup time all LED outputs are switched off to ensure smooth start-up.

NORMAL: During NORMAL mode the user controls the chip using the Control Registers. The registers can be written

in any sequence and any number of bits can be altered in a register in one write

Magnetic Boost DC/DC Converter

The LP39542 Boost DC/DC Converter generates a 4.0-5.3V voltage for the LEDs from single Li-Ion battery (3V...4.5V). The output voltage is controlled with an 8-bit register in 9 steps. The converter is a magnetic switching PWM mode DC/DC converter with a current limit. The converter has three options for switching frequency, 1 MHz, 1.67 MHz and 2 MHz (default), when timing resistor RT is 82 k Ω . Timing resistor defines the internal oscillator frequency and thus directly affects boost frequency and all circuit's internally generated timing (RGB, Flash, WLED fading).

The LP39542 Boost Converter uses pulse-skipping elimination to stabilize the noise spectrum. Even with light load or no load a minimum length current pulse is fed to the inductor. An active load is used to remove the excess charge from the output capacitor at very light loads. At very light load and when input and output voltages are very close to each other, the pulse skipping is not completely eliminated. Output voltage should be at least 0.5V higher than input voltage to avoid pulse skipping. Reducing the switching frequency will also reduce the required voltage difference.

Active load can be disabled with the en_autoload bit. Disabling will increase the efficiency at light loads, but the downside is that pulse skipping will occur. The Boost Converter should be stopped when there is no load to minimise the current consumption.

The topology of the magnetic boost converter is called CPM control, current programmed mode, where the inductor current is measured and controlled with the feedback. The user can program the output voltage of the boost converter. The output voltage control changes the resistor divider in the feedback loop.

The following figure shows the boost topology with the protection circuitry. Four different protection schemes are implemented:

- Over voltage protection, limits the maximum output voltage
 - Keeps the output below breakdown voltage.
 - Prevents boost operation if battery voltage is much higher than desired output.
- Over current protection, limits the maximum inductor current
 - Voltage over switching NMOS is monitored; too high voltages turn the switch off.
- Feedback break protection. Prevents uncontrolled operation if FB pin gets disconnected.
- 4. Duty cycle limiting, done with digital control.

Boost Converter Topology

30008508

Magnetic Boost DC/DC Converter Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{LOAD}	Load Current	$3.0V \le V_{IN}$ $V_{OUT} = 5V$	0		300	mA
		$3.0V \le V_{IN}$ $V_{OUT} = 4V$	0		400	IIIA
V _{OUT}	Output Voltage Accuracy (FB Pin)	$3.0V \le V_{IN} \le V_{OUT} - 0.5$ $V_{OUT} = 5.0V$	-5		+5	%
	Output Voltage (FB Pin)	1 mA \leq I _{LOAD} \leq 300 mA V _{IN} > 5V + V _(SCHOTTKY)		V _{IN} -V _(SCHOTTKY)		V
RDS _{ON}	Switch ON Resistance	$V_{DD1,2} = 2.8V, I_{SW} = 0.5A$		0.4	0.8	Ω
f _{boost}	PWM Mode Switching Frequency	RT = 82 k Ω freq_sel[2:0] = 1XX		2		MHz
	Frequency Accuracy	2.7 ≤ VDDA ≤ 2.9	-6	±3	+6	0/
		RT = 82 kΩ	-9		+9	%
t _{PULSE}	Switch Pulse Minimum Width	no load		25		ns
t _{STARTUP}	Startup Time	Boost startup from STANDBY		10		ms
I _{SW_MAX}	SW Pin Current Limit		700 550	800	900 950	mA

BOOST STANDBY MODE

User can stop the Boost Converter operation by writing the Enables register bit EN_BOOST low. When EN_BOOST is written high, the converter starts for 10 ms in PFM mode and then goes to PWM mode.

BOOST OUTPUT VOLTAGE CONTROL

User can control the boost output voltage by boost output 8bit register.

Boost Output [7:0] Register 0DH		Boost Output Voltage (typical)
Bin	Hex	
0000 0000	00	4.00
0000 0001	01	4.25
0000 0011	03	4.40
0000 0111	07	4.55
0000 1111	0F	4.70
0001 1111	1F	4.85
0011 1111	3F	5.00 Default
0111 1111	7F	5.15
1111 1111	FF	5.30

Boost Output Voltage Control

30008509

BOOST FREQUENCY CONTROL

freq_sel[2:0]	frequency
1XX	2.00 MHz
01X	1.67 MHz
001	1.00 MHz

Register 'boost freq' (address 0EH). Register default value after reset is 07H.

Boost Converter Typical Performance Characteristics

Vin = 3.6V, Vout = 5.0V if not otherwise stated

30008510

3000851

Boost Typical Waveforms at 100mA Load

30008511

30008513

30008515

Boost Load Transient, 50 mA-100 mA

30008516

Boost Switching Frequency 2.5 BOOST FREQUENCY (MHz) 2.0 $FREQ_SEL[2:0] = 1XX$ 1.5 01X 1.0 001 0.5 60 90 120 150 180 RT RESISTOR $(k\Omega)$ 30008517

Output Voltage vs Load Current

Efficiency at Low Load vs Autoload

30008562

Functionality of Color LED Outputs (R1, G1, B1; R2, G2, B2)

LP39542 has 2 sets of RGB/color LED outputs. Both sets have 3 outputs and the sets can be controlled in 4 different ways:

- Command based pattern generator control (internal PWM)
- 2. Audio synchronization control
- 3. Programmable ON/OFF blinking sequences for RGB1
- 4. External PWM control

By using **command based pattern generator** user can program any kind of color effect patterns. LED intensity, blinking cycles and slopes are independently controlled with 8 16-bit commands. Also real time commands are possible as well as loops and step by step control. If analog audio is available on system, the user can use **audio synchronization** for synchronizing LED blinking to the music. The different modes together with the various sub modes generate very colorful and interesting lighting effects. **Direct ON/OFF** control is mainly for switching on and off LEDs. **External PWM control** is for applications where external PWM signal is available and required to control the color LEDs. PWM signal can be connected to any color LED separately as shown later.

COLOR LED CONTROL MODE SELECTION

The RGB_SEL[1:0] bits in the Enables register (08H) control the output modes for RGB1 (R1, G1, B1) and RGB2 (R2, G2, B2) outputs as seen in the following table.

RGB_SEL	Audio sync	o sync Pattern	
[1:0]		generator	control
00	-	RGB1 & RGB2	
01	-	RGB2	RGB1
10	RGB2	RGB1	-
11	RGB1 & RGB2	-	-

RGB Control register (00H) has control bits for direct on/off control of all color LEDs. Note that the LEDs have to be turned on in order to control them with audio synchronization or pattern generator.

The external PWM signal can control any LED depending on the control register setup. External PWM signal is connected to PWM/SYNC pin. The controls are in the Ext. PWM Control register (address 07H) except the FLASH control in HC_Flash (10H) register as follows:

Ext. PWM Control (07H)		
wled1-4_pwm	bit 7	PWM controls WLED 1-4
wled5-6_pwm	bit 6	PWM controls WLED 5-6
r1_pwm	bit 5	PWM controls R1 output
g1_pwm	bit 4	PWM controls G1 output
b1_pwm	bit 3	PWM controls B1 output
r2_pwm	bit 2	PWM controls R2 output
g2_pwm	bit 1	PWM controls G2 output
b2_pwm	b2_pwm bit 0 PWM controls B2 output	
HC_Flash (10H)		
hc_pwm bit 5 PWM controls FLASH		

Note: If DISPL=1, wled1-4pwm controls WLED1-6

Note: Maximum external PWM frequency is 1kHz. If during the external PWM control the internal PWM is on, the result will be product of both functions.

CURRENT CONTROL OF COLOR LED OUTPUTS (R1, R2, G1, G2, B1, B2)

Both RGB output sets can be separately controlled as constant current sinks or as switches. This is done using cc_rgb1/2 bits in the RGB control register. In constant current mode one or both RGB output sets are controlled with constant current sinks (no external ballast resistors required). The maximum output current for both drivers is set by one external resistor R_{RGB}. User can decrease the maximum current for an individual LED driver by programming as shown later.

The maximum current for all RGB drivers is set with ${\rm R}_{\rm RGB}$. The equation for calculating the maximum current is

$$I_{MAX} = 100 \times 1.23 V / (R_{RGB} + 50 \Omega)$$

where

 ${\rm I}_{\rm MAX}$ - maximum RGB current in any RGB output in constant current mode

1.23V - reference voltage

100 - internal current mirror multiplier

R_{RGB}- resistor value in Ohms

 50Ω - internal resistor in the I_{RGB} input

For example if 22mA is required for maximum RGB current $R_{\rm RGB}$ equals to

 R_{BGB} =100×1.23V / I_{MAX} -50 Ω =123V / 0.022A-50 Ω =**5.54k\Omega**

Each individual RGB output has a separate maximum current programming. The control bits are in registers **RGB1 max current** and **RGB2 max current** (12H and 13H) and programming is shown in table below. The default value after reset is 00b.

IR1[1:0], IG1[1:0], IB1[1:0], IR2[1:0], IG2[1:0], IB2[1:0]	Maximum current/output
00	0.25 × I _{MAX}
01	$0.50 \times I_{MAX}$
10	0.75 × I _{MAX}
11	1.00 × I _{MAX}

SWITCH MODE

The switch mode is used if there is a need to connect parallel LEDs to output or if the RGB output current needs to be increased.

Please note that the switch mode requires an external ballast resistors at each output to limit the LED current.

The switch/current mode and on/off controls for RGB are in the RGB_ctrl register (00H).

RGB_ctrl register (00H)

CC RGB1	bit7	1	R1, G1 and B1 are switches → limit current with ballast resistor
CC_RGB1 DIL7		0	R1, G1 and B1 are constant current sinks, current limited internally
CC BGBs	bit6	1	R2, G2 and B2 are switches → limit current with ballast resistor
CC_RGB2 bit6		0	R2, G2 and B2 are constant current sinks, current limited internally
r1sw	bit5	1	R1 is on
ITISW	טונט	0	R1 is off
g1sw	bit4	1	G1 is on
gisw	DIL4	0	G1 is off
b1sw	bit3	1	B1 is on
DISW	טונט	0	B1 is off
r2sw	bit2	1	R2 is on
125W	טונב	0	R2 is off
g2sw	bit1	1	G2 is on
92300	DILI	0	G2 is off
b2sw	bit0	1	B2 is on
DESW	טונט	0	B2 is off

RGB1 output as switch (SW)

RGB1 output as a constant current sink (CC)

30008518

Command Based Pattern Generator for Color LEDs

The LP39542 has an unique stand-alone command based pattern generator with 8 user controllable 16-bit commands.

Since registers are 8-bit long one command requires 2 write cycles. Each command has intensity level for each LED, command execution time (CET) and transition time (TT) as seen in the following figures.

COMMAND REGISTER WITH 8 COMMANDS

COMMAND 1	ADDRESS 50H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 51H	CET1	CET0	B2	B1	В0	TT2	TT1	TT0
COMMAND 2	ADDRESS 52H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 53H	CET1	CET0	B2	B1	B0	TT2	TT1	TT0
COMMAND 3	ADDRESS 54H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 55H	CET1	CET0	B2	B1	В0	TT2	TT1	TT0
COMMAND 4	ADDRESS 56H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 57H	CET1	CET0	B2	B1	В0	TT2	TT1	TT0
COMMAND 5	ADDRESS 58H	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 59H	CET1	CET0	B2	B1	B0	TT2	TT1	TT0
COMMAND 6	ADDRESS 5AH	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 5BH	CET1	CET0	B2	B1	В0	TT2	TT1	TT0
COMMAND 7	ADDRESS 5CH	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 5DH	CET1	CET0	B2	B1	B0	TT2	TT1	TT0
COMMAND 8	ADDRESS 5EH	R2	R1	R0	G2	G1	G0	CET3	CET2
	ADDRESS 5FH	CET1	CET0	B2	B1	B0	TT2	TT1	TT0

COLOR INTENSITY CONTROL

Each color has 3-bit intensity level. Level control is logarithmic, 2 curves are selectable. The LOG bit in register 11H defines the curve used as seen in the following table.

R[2:0], G[2:0],	CURRENT				
B[2:0]	[% × I _{MAX(COLOR)}]				
	LOG=0	LOG=1			
000	0	0			
001	7	1			
010	14	2			
011	21	4			
100	32	10			
101	46	21			
110	71	46			
111	100	100			

30008520

COMMAND EXECUTION TIME (CET) AND TRANSITION TIME (TT)

The command execution CET time is the duration of one single command. Command execution times CET are defined as follows, when R_T =82k Ω :

CET [3:0]	CET duration, ms
0000	197
0001	393
0010	590
0011	786
0100	983
0101	1180
0110	1376
0111	1573
1000	1769
1001	1966
1010	2163
1011	2359
1100	2556
1101	2753

CET [3:0]	CET duration, ms
1110	2949
1111	3146

Transition time TT is duration of transition from the previous RGB value to programmed new value. Transition times TT are defined as follows:

TT [2:0]	Transition time, ms
000	0
001	55
010	110
011	221
100	442
101	885
110	1770
111	3539

The figure below shows an example of RGB CET and TT times.

The command execution time also may be less than the transition time – the figure below illuminates this case.

LOOP CONTROL

Pattern generator commands can be looped using the LOOP bit (D1) in Pattern gen ctrl register (11H). If LOOP=1 the program will be looped from the command 8 register or if there

is 0000 0000 and 0000 0000 in one command register. The loop will start from command 1 and continue until stopped by writing rgb_start=0 or loop=0. The example of loop is shown in following figure:

30008523

SINGLE PROGRAM

If control bit LOOP=0 the program will start from Command 1 and run to either last command or to empty "0000 0000 / 0000 0000" command.

LOOP=0		IF 0	000 00	00 and	0000 t	0000	then 🗦	STOF	•	_	
COMMAND 1	ADDRESS 50H									$ \neg$	start
COMMAND 1	ADDRESS 51H										
COMMAND 2	ADDRESS 52H										
	ADDRESS 53H										stop
COMMAND 3	ADDRESS 54H	0	0	0	0	0	0	0	0		·
	ADDRESS 55H	0	0	0	0	0	0	0	0		

30008524

The LEDs maintain the brightness of the last command when the single program stops. Changes in command register will not be effective in this phase. The RGB_START bit has to be toggled off and on to make changes effective.

START BIT

Pattern_gen_ctrl register's RGB_START bit will enable command execution starting from Command 1.

Pattern gen ctrl register (11H)					
rgb_start Bit 2 0 - Pattern generator disabled 1 - execution pattern starting from command 1					
loop	Bit 1	0 – pattern generator loop disabled (single pattern) 1 – pattern generator loop enabled (execute until stopped)			
log	Bit 0	0 – color intensity mode 0 1 – color intensity mode 1			

Audio Synchronization

The color LEDs connected to RGB outputs can be synchronized to incoming audio with Audio Synchronization feature. Audio Sync has 2 modes. **Amplitude mode** synchronizes color LEDs based on input signal's peak amplitude. In the amplitude mode the user can select between 3 different amplitude mapping modes and 4 different speed configurations. The **frequency mode** synchronizes the color LEDs based on bass, middle and treble amplitudes (= low pass, band pass and high pass filters). User can select between 2 different frequency responses and 4 different speed configurations for best audio-visual user experience. Programmable gain and AGC function are also available for adjustment of input signal amplitude to light response. The Audio Sync functionality is described more closely below.

USING A DIGITAL PWM AUDIO SIGNAL AS AN AUDIO SYNCHRONIZATION SOURCE

If the input signal is a PWM signal, use a first or second order low pass filter to convert the digital PWM audio signal into an analog waveform. There are two parameters that need to be known to get the filter to work successfully: frequency of the PWM signal and the voltage level of the PWM signal. Suggested cut-off frequency (-3 dB) should be around 2 kHz to 4 kHz and the stop-band attenuation at sampling frequency should be around -48 dB or better. Use a resistor divider to reduce the digital signal amplitude to meet the specification of the analog audio input. Because a low-order low-pass filter attenuates the high-frequency components from audio signal, MODE_CTRL=01b selection is recommended when frequency synchronization mode is enabled. Application example 5 shows an example of a second order RC-filter for 29 kHz

PWM signal with 3.3V amplitude. Active filters, such as a Sallen-Key filter, may also be applied. An active filter gives better stop-band attenuation and cut-off frequency can be higher than for a RC-filter.

To make sure that the filter rolls off sufficiently quickly, connect your filter circuit to the audio input(s), turn on the audio synchronization feature, set manual gain to maximum, apply the PWM signal to the filter input and keep an eye on LEDs. If they are blinking without an audio signal (modulation), a sharper roll-off after the cut-off frequency, more stop-band attenuation, or smaller amplitude of the PWM signal is required.

AUDIO SYNCHRONIZATION SIGNAL PATH

LP39542 audio synchronization is mainly done digitally and it consists of the following signal path blocks:

- Input Buffers
- AD Converter
- DC Remover
- Automatic Gain Control (AGC)
- · Programmable Gain
- · 3 Band Digital Filter
- Peak Detector
- Look-up Tables (LUT)
- · Mode Selector
- Integrators
- PWM Generator
- Output Drivers

scribed in the Audio Synch table. The buffer is rail-to-rail input operational amplifier connected as a voltage follower. DC level of the input signal is set by a simple resistor divider

The digitized input signal has DC component that is removed by digital DC REMOVER (-3 dB @ 400 Hz). Since the light response of input audio signal is very much amplitude dependent the AGC adjusts the input signal to suitable range automatically. User can disable AGC and the gain can be set manually with PROGRAMMABLE GAIN. LP39542 has 2 audio synchronization modes: amplitude and frequency. For amplitude based synchronization the PEAK DETECTION method is used. For frequency based synchronization 3 BAND FILTER separates high pass, low pass and band bass signals. For both modes the predefined LUT is used to optimize the audio visual effect. MODE SELECTOR selects the synchronization mode. Different response times to music beat can be selected using INTEGRATOR speed variables. Finally PWM GENERATOR sets the driver FET duty cycles.

INPUT SIGNAL TYPE AND BUFFERING

LP39542 supports single ended audio input as shown in the figure below. The electric parameters of the buffer are de-

30008526

17

AUDIO SYNCHRONIZATION ELECTRICAL PARAMETERS

Symbol	Parameter	Conditions	Min	Typical	Max	Units
Z _{IN}	Input Impedance of ASE		250	500		kΩ
A _{IN}	Audio Input Level Range (peak-to-peak)	Gain = 21 dB Gain = 0 dB	0.1		V _{DDA} -0.1	V
f _{3dB}	Crossover Frequencies (-3 dB)					
	Narrow Frequency Response	Low Pass		0.5		
		Band Pass		1.0 and 1.5		
		High Pass		2.0		kHz
	Wide Frequency Response	Low Pass		1.0		
		Band Pass		2.0 and 3.0		
		High Pass		4.0		

CONTROL OF ADC AND AUDIO SYNCHRONIZATION

The following table describes the controls required for audio synchronization.

	Audio_sync_CTRL1 (2AH)						
		Input signal gain control. F	ange 021 dB, step 3 dB:				
GAIN_SEL[2:0]	D::	[000] = 0 dB (default)	[011] = 9 dB	[110] = 18 dB			
GAIN_SEL[2:0]	Bits 7-5	[001] = 3 dB	[100] = 12 dB	[111] = 21 dB			
		[010] = 6 dB	[101] = 15 dB				
		Synchronization mode sele	ector.				
SYNC_MODE	Bit 4	SYNCMODE = 0 → Amplit	ude Mode (default)				
		SYNCMODE = 1 → Freque	ency Mode				
		Automatic Gain Control en	able				
EN_AGC	Bit 3	1 = enabled					
		0 = disabled (Gain Select	enabled) (default)				
		Audio synchronization enable					
EN SYNC	Bit 2	1 = Enabled					
LII_OTIIO	Dit Z	Note: If AGC is enabled, AGC gain starts from current GAIN_SEL gain value.					
		0 = Disabled (default)					
		[00] = Single ended input signal, ASE.					
INPUT_SEL[1:0]	Bits 1-0	[01] = Temperature measurement					
		[10] = Ambient light measu	irement				
		[11] = No input (default)	OTDLO (ODLI)				
	1		CTRL2 (2BH)				
EN_AVG	Bit 4	0 – averaging disabled (no		· · · · · · · · · · · · · · · · · · ·			
MODE OTDUK O	D:1 0 0	1 – averaging enabled (no	applicable in audio sync r	node)			
MODE_CTRL[1:0]	Bits 3-2	See below: Mode control					
		Sets the LEDs light respon	ise time to audio input.				
		[00] = FASTEST (default)					
ODEED OTDUITAN	D:1- 4 0	[01] = FAST					
SPEED_CTRL[1:0]	Bits 1-0	[10] = MEDIUM					
		[11] = SLOW (For SLOW setting in amplitude mode f _{MAX} = 3.8 Hz,					
		Frequency mode $f_{MAX} = 7$.					
		1. 104001103 111000 1 _{MAX} = 7.	o ,				

MODE CONTROL IN FREQUENCY MODE

Mode control has two setups based on audio synchronization mode select: the frequency mode and the amplitude mode. During the **frequency mode** user can select two filter options by MODE_CTRL as shown below. User can select the filters

based on the music type and light effect requirements. In the first mode the frequency range extends to 8 kHz in the secont to 4 kHz.

The lowpass filter is used for the red, the bandpass filter for the blue and the hipass filter for the green LED.

Higher frequency mode MODE_CTRL = 00 and SYNC_MODE = 1

30008527

MODE CONTROL IN AMPLITUDE MODE

During the amplitude synchronization mode user can select between three different amplitude mappings by using

30000327

30008529

Lower frequency mode MODE_CTRL = 01 and SYNC_MODE = 1

300085

MODE_CTRL select. These three mapping options give different light response. The modes are presented in the following graphs.

Partly overlapping mode MODE_CTRL[1:0] = [00]

30008530

RGB Output Synchronization to External Clock

The RGB pattern generator and high current flash driver timing can be synchronized to external clock with following configuration.

1. Set PWM_SYNC bit in Enables register to 1

2. Feed SYNC/PWM pin with 5 MHz clock

By this the internal 5 MHz clock is disabled from pattern generator and flash timing circuitry.

The external clock signal frequency will fully determine the timings related to RGB and Flash.

Note: The boost converter will use internal 5 MHz clock even if the external clock is available.

RGB LED Blinking Control

LP39542 has a possibility to drive indicator LEDs with RGB1 outputs with programmable blinking time. Blinking function is enabled with RGB_SEL[1:0] bits set as 01b in 0BH register. R1_CYCLE_EN, G1_CYCLE_EN and B1_CYCLE_EN bits in cycle registers (02H, 04H and 06H) enable/disable blinking function for corresponding output. When EN_BLINK bit is written high in register 11H, the blinking sequences for all outputs (which has CYCLE_EN bit enabled) starts simultaneously. EN_BLINK bit should be written high after selecting wanted blinking sequences and enabling CYCLE_EN bits, to

synchronize outputs to get desired lighting effect. R1SW, G1SW and B1SW bits can be used to enable and disable outputs when wanted.

RGB1 blinking sequence is set with R1, G1 and B1 blink registers (01H, 03H and 05H) by setting the appropriate OFF-ON times. Blinking cycle times are set with R1_CYCLE[2:0], G1_CYCLE[2:0] and B1_CYCLE[2:0] bits in R1, G1 and B1 CYCLE registers (02H, 04H and 06H). OFF/ON time is a percentage of the selected cycle time. Values for setting OFF/ON time can be seen in following table.

R1, G1 and B1 Blink Registers (01H, 03H and 05H):

Name	Bit	Desci	ription
R1_ON[3:0], R1_OFF[3:0]	7-4, 3-0	RGB1 ON a	nd OFF time
G1_ON[3:0], G1_OFF[3:0]		Bits	ON/OFF time
B1_ON[3:0], B1_OFF[3:0]		0000	0%
		0001	1%
		0010	2.5%
		0011	5%
		0100	7.5%
		0101	10%
		0110	15%
		0111	20%
		1000	30%
		1001	40%
		1010	50%
		1011	60%
		1100	70%
		1101	80%
		1110	90%
		1111	100%

Blinking ON/OFF cycle is defined so that there will be first OFF-period then ON-period after which follows an off-period for the remaining cycle time that can not be set. If OFF and ON times are together more than 100% the first OFF time will be as set and the ON time is cut to meet 100%. For example,

if 50% OFF time is set and ON time is set greater than 50%, only 50% ON time is used, the exceeding ON time is ignored. If OFF and ON times are together less than 100% the remaining cycle time output is OFF.

Values for setting the blinking cycle for RGB1 can be seen in following table:

R1, G1 and B1 Cycle Registers (02H, 04H and 06H):

Name	Bit		Decription				
R1_CYCLE_EN G1_CYCLE_EN B1_CYCLE_EN	3	Blinking enable 0 = disabled 1 = enabled, output state is defined with blinking cycle					
R1_CYCLE[2:0]	2-0		RGB1 cycle time)			
G1_CYCLE[2:0] B1_CYCLE[2:0]		Bits	Blinking cycle time	Blinking frequency			
		000 0.1s 10 Hz					
		001	0.25s	4 Hz			
		010	0.5s	2 Hz			
		011	1s	1 Hz			
		100	2s	0.5 Hz			
		101 3s 0.33 Hz					
		110	4s	0.25 Hz			
		111	5s	0.2 Hz			

PATTERN_GEN_CTRL Register (11H):

Name	Bit	Description
EN_BLINK	3 Blinking sequence start bit	
		0 = disabled
		1 = enabled

RGB Driver Electrical Characteristics (R1, G1, B1, R2, G2, B2 Outputs)

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{LEAKAGE}	R1, G1, B1, R2, G2, B2 pin leakage current			0.1	1	μA
I _{RGB}	Maximum recommended sink current	CC mode			40	mA
		SW mode			50	mA
	Accuracy @ 37mA	R _{RGB} =3.3 kΩ ±1%, CC mode		±5		%
	Current mirror ratio	CC mode		1:100		
	RGB1 and RGB2 current mismatch	I _{RGB} =37mA, CC mode		±5		%
R _{SW}	Switch resistance	SW mode		2.5	5	Ω
f _{RGB}	RGB switching frequency	Accuracy proportional to internal clock freq.	18.2	20	21.8	kHz
		If SYNC to external 5 MHz clock is in use		20		kHz

Note: RGB current should be limited as follows: constant current mode – limit by external R_{RGB} resistor; switch mode – limit by external ballast resistors

Output Current vs Pin Voltage (Current Sink Mode)

Output Current vs R_{RGB} (Current Sink Mode)

30008567

Pin Voltage vs Output Current (Switch Mode)

30008568

Single High Current Driver

LP39542 has internal constant current driver that is capable of driving high current LED, mainly targeted for FLASH LED in camera phone applications.

MAXIMUM CURRENT SETUP FOR FLASH

The user sets the maximum current of FLASH with R_{FLASH} resistor based on following equation:

$$I_{MAX} = 300 \times 1.23 V / (R_{FLASH} + 50 \Omega),$$

where

Imax = maximum flash current in Amps (ie. 0.3A)

1.23V = reference voltage

300 = internal current mirror multiplier

R_{FLASH} = Resistor value in Ohms

 50Ω = Internal resistor in the I_{FLASH} input

For example if 400mA is required for the maximum flash current, $\rm R_{FLASH}$ equals to

 R_{FLASH} = 300 × 1.23V / I_{MAX} – 50Ω = 369V / 0.4A – 50Ω = 873Ω e.g. 910Ω resistor can be used

CURRENT CONTROL FOR FLASH

To minimize the internal current consumption, the flash function has an enable bit EN_HCFLASH in the HC_Flash register.

EN_ HCFLASH	MODE
	FLASH disabled, no extra current
0	consumption through R _{FLASH}
4	FLASH enabled, IFLASH set by
ı	HC_SW[1:0] (see below)

HC[1:0] bits in the HC_Flash register control the FLASH current as show in following table.

HC[1:0]	I(FLASH)
00	$0.25 \times I_{MAX(FLASH)}$
01	$0.50 \times I_{MAX(FLASH)}$
10	0.75 × I _{MAX(FLASH)}
11	1.00 × I _{MAX(FLASH)}

The figure below shows the internal structure for the FLASH driver.

FLASH TIMING

Flash output is turned on in lower current View finder mode when the EN_HCFLASH bit is written high. The actual flash at maximum current starts when the FLASH_EN digital input pin goes high. The Flash length can be selected from 3 predefined values or the FLASH_EN pin pulse length can determine how long the flash pulse is. After flash pulse the flash is shut down completely. To enable flash again, EN_HCFLASH bit must be set to 0 and then 1.The pulse length is controlled by the FT_T[1:0] bits in register 10H as show in the table below.

FL_T[1:0]	Flash duration typ	Current during view finder/ focusing	Current during FLASH
00	200ms	Set by HC[1:0]	$HC[11] = I_{MAX(FLASH)}$
01	400ms	Set by HC[1:0]	$HC[11] = I_{MAX(FLASH)}$
10	600ms	Set by HC[1:0]	$HC[11] = I_{MAX(FLASH)}$
11	EN_FLASH on duration	Set by HC[1:0]	$HC[11] = I_{MAX(FLASH)}$

After the flash pulse the EN_HCFLASH bit has to be written low, the LP39542 does not clear this bit automatically. If 11b is selected in the FL_T[1:0] register, then it is possible to use safety bit EN_SAFETY in register 10H. When EN_SAFETY is 1, then the flash is shut down automatically, if the

FLASH_EN pulse duration is longer than 1.2 seconds (typ.). This prevents any damage to the application circuitry, if the FLASH_EN pin is stuck high because of user or program error.

The following figure shows the functionality of the built-in flash

Flash LED can be controlled also with external PWM signal:

HC_FLASH Register (10H):

Name	Bit	Description	
		Flash external PWM control	
HC_PWM	5	0 = Flash external PWM control disabled	
		1 = Flash external PWM control enabled	

High Current Driver Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{LEAKAGE}	FLASH pin leakage current			0.1	2	μΑ
I _{MAX(FLASH)}	Maximum Sink Current				400	mA
	Accuracy	$R_{FLASH} = 910\Omega$	-10 -5		10 5	%
	Current mirror ratio			1:300		
t _{SAFETY}	Flash safety time	EN_SAFETY = 1, FL_T = 11b		1.2		s

Backlight Drivers

LP39542 has 2 independent backlight drivers. Both drivers are regulated constant current sinks. LED current for both LED banks (WLED1...4 and WLED5...6) are controlled by 8-bit current mode DACs with 0.1 mA step.

WLED1...4 and WLED5...6 can be also controlled with one DAC for better matching allowing the use of larger displays having up to 6 white LEDs in parallel.

Display configuration is controlled with DISPL bit as shown in the following table.

DISPL	Configuration	Matching
	Main display up	Good btw
0	to 4 LEDs	WLED14
0	Sub display up	Good btw
	to 2 LEDs	WLED56
4	Large display	Good btw
l	up to 6 LEDs	WLED 16

Main display up to 4 LEDs (WLED1...4)

Sub display driver up to 2 LEDs (WLED5...6)

Main display up to 6 LEDs (WLED1...6) (DISPL=1)

FADE IN / FADE OUT

LP39542 has an automatic fade in and out for main and sub backlight. The fade function is enabled to main and sub backlights with EN_FADE_W1_4 and EN_FADE_W5_6 register bits. Register bits SLOPE_W1_4 and SLOPE_W5_6 set the

slope of the fade curve. The fading times are shown in the graphs, which corresponds the full range current change (0-255). Note that when large display mode is selected (DIS-PL = 1), then EN_FADE_W5_6 and SLOPE_W5_6 bits do not have any effect.

WLED Control Register (08H):

Name	Bit	Description
SLOPE_W5_6	6	Slope for WLED5-6 0 = Full range fade execution time 1.30s 1 = Full range fade execution time 0.65s
SLOPE_W1_4	5	Slope for WLED1-4 0 = Full range fade execution time 1.30s 1 = Full range fade execution time 0.65s
EN_FADE_W5_6	4	Enable fade for WLED5-6 0 = Fade disabled 1 = Fade enabled
EN_FADE_W1_4	3	Enable fade for WLED1-4 0 = Fade disabled 1 = Fade enabled
DISPL	2	Large display mode enable 0 = WLED1-4 and WLED5-6 are controlled separately 1 = WLED1-4 and WLED5-6 are controlled with WLED1-4 controls
EN_W1_4	1	Enable WLED1-4 0 = WLED1-4 disabled 1 = WLED1-4 enabled
EN_W5_6	0	Enable WLED5-6 0 = WLED5-6 disabled 1 = WLED5-6 enabled

ADJUSTMENT

WLED1-4[7:0] WLED5-6[7:0]	Driver current, mA (typical)
0000 0000	0
0000 0001	0.1
0000 0010	0.2
0000 0011	0.3
1111 1101	25.3
1111 1110	25.4
1111 1111	25.5

30008538

Backlight Driver Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typical	Max	Units
I _{MAX}	Maximum Sink Current		21.3	25.5	29.4	mA
l _{leakage}	Leakage Current			0.03	1	μA
I _{WLED1}	WLED1 Current tolerance	I _{WLED1} set to 12.8 mA (80H)	10.52	12.8	14.78	mA
			-18		+16	%
I _{match1-4}	Sink Current Matching	I _{SINK} = 13 mA, Between WLED14		0.2		%
I _{match5-6}	Sink Current Matching	I _{SINK} = 13 mA, Between WLED56	·	0.2		%
I _{match1-6}	Sink Current Matching	I _{SINK} = 13 mA, Between WLED16		0.3		%

Note: Matching is the maximum difference from the average.

Ambient Light and Temperature Measurement with LP39542

The Analog-to-Digital converter (ADC) in the Audio Syncronization block can be also used for ambient light measurement or temperature measurement.

The selection between these modes is controlled with input selector bits INPUT_SEL[1:0] in register 2AH as seen on the following table. Internal averaging function can be used to filter unwanted noise from the measured signal. Averaging function can be enabled with EN_AVG bit in register 2BH.

INPUT_SEL[1:0]	Mode
00	Audio synchronization
01	Temperature measurement (voltage input)
10	Ambient light measurement (current input)
11	No input

EN_AVG = 0	Averaging disabled. f _{sample} = 122 Hz,		
	data in register changes every 8.2 ms.		
EN_AVG = 1	Averaging enabled. f _{sample} = 244 Hz,		
	averaging of 64 samples, data in		
	register changes every 262 ms		
	(3.2Hz).		

AMBIENT LIGHT MEASUREMENT

The ambient light measurement requires only one external component: Ambient light sensor (photo transistor or diode). The ADC reads the current level at ASE pin and converts the result into a digital word. User can read the ADC output from the ADC output register. The known ambient light condition allows user to set the backlight current to optimal level thus saving power especially in low light and bright sunlight condition.

ASE Input Configuration for Light Measurement

ADC Code vs Input Current in Light Measurement Mode

30008564

TEMPERATURE MEASUREMENT

The temperature measurement requires two external components: resistor and thermistor (resistor that has known temperature vs resistance curve). The ADC reads the voltage level at ASE pin and converts the result into a digital word. User can read the ADC output from register. The known temperature allows for example to monitor the temperature inside the display module and decrease the current level of the LEDs if temperature raises too high. This function may increase lifetime of LEDs in some applications.

Temperature sensor connection example

ADC Code vs Input Voltage in temperature measurement mode

Example curve for thermistor

EXAMPLE TEMP SENSOR READING AT DIFFERENT TEMPERATURES (R $_{25^{\circ}C}$ = 1M Ω)

T(°C)	R(MΩ)	Rt(MΩ)	V(ASE)	
-40	1	60	2.7540984	
0	1	4	2.24	
25	1	1	1.4	
60	1	0.2	0.4666667	
100	1	0.04	0.1076923	

7V Shielding

To shield LP39542 from high input voltages 6...7.2V the use of external 2.8V LDO is required. This 2.8V voltage protects internally the device against high voltage condition. The rec-

ommended connection is as shown in the picture below. Internally both logic and analog circuitry works at 2.8V supply voltage. Both supply voltage pins should have separate filtering capacitors.

30008544

In cases where high voltage is not an issue the connection is as shown below

Logic Interface Electrical Characteristics

 $(1.65V \le V_{DDIO} \le V_{DD1.2}V)$ (Unless otherwise noted).

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
LOGIC INPL	LOGIC INPUTS ADDR_SEL, NRST, SCL, SYNC_PWM, FLASH_EN, SDA							
V_{IL}	Input Low Level				0.2×V _{DDIO}	V		
V_{IH}	Input High Level		0.8×V _{DDIO}			V		
IL	Logic Input Current		-1.0		1.0	μΑ		
f _{SCL}	Clock Frequency				400	kHz		
LOGIC OUTPUT SDA								
V _{OL}	Output Low Level	I _{SDA} = 3 mA		0.3	0.5	V		
IL	Output Leakage Current	V _{SDA} = 2.8V			1.0	μΑ		

Note: Any unused digital input pin has to be connected to GND to avoid floating and extra current consumption.

I²C Compatible Interface

INTERFACE BUS OVERVIEW

The I2C compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bi-directional communications between the devices connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). These lines should be connected to a positive supply, via a pull-up resistor and remain HIGH even when the bus is idle. Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock (SCL).

DATA TRANSACTIONS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

I²C DATA VALIDITY

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

I²C Signals: Data Validity

I2C START AND STOP CONDITIONS

START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and STOP bits. The I2C bus is considered to be busy after START condition and free after STOP condition. During data transmission, I2C master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

TRANSFERRING DATA

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.

After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LP39542 address is 54h or 55H as selected with ADDR_SEL pin. I2C address for LP39542 is 54H when ADDR_SEL=0 and 55H when ADDR_SEL=1. For the eighth bit, a "0" indicates a WRITE and a "1" indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

I2C Chip Address

Register changes take an effect at the SCL rising edge during the last ACK from slave.

w = write (SDA = "0")

r = read (SDA = "1")

ack = acknowledge (SDA pulled down by either master or slave)

rs = repeated start

id = 7-bit chip address, 54H (ADDR_SEL=0) or 55H (ADDR_SEL=1) for LP39542.

I²C Write Cycle

When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle waveform.

I²C Timing Parameters

 $V_{\mathrm{DD1,2}}$ = 3.0 to 4.5V, $V_{\mathrm{DD_IO}}$ = 1.65V to $V_{\mathrm{DD1,2}}$

Symbol	Parameter	Lin	Limit	
		Min	Max	
1	Hold Time (repeated) START Condition	0.6		μs
2	Clock Low Time	1.3		μs
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time (Output direction, delay generated by LP39542)	300	900	ns
5	Data Hold Time (Input direction, delay generated by the Master)	0	900	ns
6	Data Setup Time	100		ns
7	Rise Time of SDA and SCL	20+0.1C _b	300	ns
8	Fall Time of SDA and SCL	15+0.1C _b	300	ns
9	Set-up Time for STOP condition	600		ns
10	Bus Free Time between a STOP and a START Condition	1.3		μs
C _b	Capacitive Load for Each Bus Line	10	200	pF

NOTE: Data guaranteed by design

Autoincrement mode is available, with this mode it is possible to read or write bytes with autoincreasing addresses. LP39542 has empty spaces in address register map, and it is recommended to use autoincrement mode only for writing in pattern command registers.

Recommended External Components

OUTPUT CAPACITOR, COUT

The output capacitor C_{OUT} directly affects the magnitude of the output ripple voltage. In general, the higher the value of C_{OUT} , the lower the output ripple magnitude. Multilayer ceramic capacitors with low ESR are the best choice. At the lighter loads, the low ESR ceramics offer a much lower Vout ripple that the higher ESR tantalums of the same value. At the higher loads, the ceramics offer a slightly lower Vout ripple magnitude than the tantalums of the same value. However, the dv/dt of the Vout ripple with the ceramics is much lower than the tantalums under all load conditions. Capacitor voltage rating must be sufficient, 10V or greater is recommended.

Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction with the increased applied DC voltage, so called DC bias effect. The capacitance value can fall to below half of the nominal capacitance. Too low output capacitance will increase noise and it can make the boost converter unstable. Recommended maximum DC bias effect at 5V DC voltage is -50%.

INPUT CAPACITOR, CIN

The input capacitor $C_{\rm IN}$ directly affects the magnitude of the input ripple voltage and to a lesser degree the $V_{\rm OUT}$ ripple. A higher value $C_{\rm IN}$ will give a lower $V_{\rm IN}$ ripple. Capacitor voltage rating must be sufficient, 10V or greater is recommended.

OUTPUT DIODE, D₁

A schottky diode should be used for the output diode. Peak repetitive current rating of the schottky diode should be larger than the peak inductor current (ca. 1A). Average current rating of the schottky diode should be higher than maximum output current (400 mA). Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse breakdown of the schottky diode larger than the output voltage. Do not use ordinary rectifier diodes, since slow switching speeds and long recovery times cause the efficiency and the load regulation to suffer.

INDUCTOR, L₁

The LP39542's high switching frequency enables the use of the small surface mount inductor. A 4.7 μ H shielded inductor is suggested for 2 MHz operation, 10 μ H should be used at 1 MHz. The inductor should have a saturation current rating higher than the peak current it will experience during circuit operation (ca. 1A). Less than 300 m Ω ESR is suggested for high efficiency. Open core inductors cause flux linkage with circuit components and interfere with the normal operation of the circuit. This should be avoided. For high efficiency, choose an inductor with a high frequency core material such as ferrite to reduce the core losses. To minimize radiated noise, use a toroid, pot core or shielded core inductor. The inductor should be connected to the SW pin as close to the IC as possible. Examples of suitable inductors are: TDK VLF4012AT-4R7M1R1 and Panasonic ELLVEG4R7N.

LIST OF RECOMMENDED EXTERNAL COMPONENTS

Symbol	Symbol explanation	Value	Unit	Туре	
C _{VDD1}	C between VDD1 and GND	100	nF	Ceramic, X7R / X5R	
C _{VDD2}	C between VDD2 and GND	100	nF	Ceramic, X7R / X5R	
C _{VDDIO}	C between VDDIO and GND	100	nF	Ceramic, X7R / X5R	
C _{VDDA}	C between VDDA and GND	1	μF	Ceramic, X7R / X5R	
C _{OUT}	C between FB and GND	10	μF	Ceramic, X7R / X5R, 10V	
C _{IN}	C between battery voltage and GND	10	μF	Ceramic, X7R / X5R	
L ₁	L between SW and V _{BAT} at 2 MHz	4.7	μH	Shielded, low ESR, Isat 1A	
C _{VREF}	C between V _{REF} and GND	100	nF	Ceramic, X7R	
C _{VDDIO}	C between V _{DDIO} and GND	100	nF	Ceramic, X7R	
R _{FLASH}	R between I _{FLASH} and GND	1.2	kΩ	±1%	
R _{RBG}	R between I _{RGB} and GND	5.6	kΩ	±1%	
R _{RT}	R between I _{RT} and GND	82	kΩ	±1%	
D ₁	Rectifying Diode (Vf @ maxload)	0.3	V	Schottky diode	
C _{ASE}	C between Audio input and ASE	100	nF	Ceramic, X7R / X5R	
LEDs			User defined		
D _{LIGHT}	Light Sensor		TDK BSC2015		

Application Examples

EXAMPLE 1

- __ MAIN BACKLIGHT
- __ SUB BACKLIGHT
- __ AUDIO SYNCHRONIZED FUNLIGHTS
- __ RGB INDICATION LIGHT
- __ FLASH LED

FLIP PHONE

- __ 6 WHITE LED BACKLIGHT
- __ KEYPAD LIGHTS
- __ RGB INDICATION LED
- __ WHITE SINGLE LED FLASH
- __ TEMPERATURE SENSOR

SMART PHONE

- __ MAIN BACKLIGHT
- __ KEYPAD LIGHTS
- __ AUDIO SYNCHRONIZED FUNLIGHTS
- __ VIBRA

CANDYBAR PHONE

- __ MAIN BACKLIGHT
- __ SUB BACKLIGHT
- __ AUDIO SYNCHRONIZED FUNLIGHTS
- __ RGB INDICATION LIGHT

There may be cases where the audio input signal going into the LP39542 is too weak for audio synchronization. This figure presents a single-supply inverting amplifier connected to the ASE input for audio signal amplification. The amplification is +20 dB, which is well enough for 20 mVp-p audio signal. Because the amplifier (LMV321) is operating in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the input signal is within the input common-mode voltage range of the amplifier. The capacitor C1 is placed between the inverting input and resistor R1 to block the DC signal going into the audio signal source. The values of R1 and C1 affect the cutoff frequency, fc = 1/(2***R1**C1), in this case it is around 160 Hz. As a result, the LMV321 output signal is centered around mid-supply, that is V_{DDA}/2. The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system

USING EXTRA AMPLIFIER

- __ MAIN BACKLIGHT
- __ SUB BACKLIGHT
- __ AUDIO SYNCHRONIZED FUNLIGHTS
- __ RGB INDICATION LIGHT

Here, a second order RC-filter is used on the ASE input to convert a PWM signal to an analog waveform.

USING PWM SIGNAL

More application information is available in the document "LP39542 Evaluation Kit".

(HEX)	REGISTER	D7	D6	D2	D4	D3	D2	10	00
2	3000	cc_rgb1	cc_rgb2	r1sw	g1sw	b1sw	r2sw	g2sw	b2sw
		-	-	0	0	0	0	0	0
2	14:14	r1_on[3]	r1_on[2]	r1_on[1]	r1_on[0]	r1_off[3]	r1_off[2]	r1_off[1]	r1_off[0]
_	AIIIIO I II	0	0	0	0	0	0	0	0
١,	2010					r1_cycle en	r1_cycle[2]	r1_cycle[1]	r1_cycle[0]
 Z	KI CYCIE					0	0	0	0
	14:14	g1_on[3]	g1_on[2]	g1_on[1]	g1_on[0]	g1_off[3]	g1_off[2]	g1_off[1]	g1_off[0]
3	YUIIG 15	0	0	0	0	0	0	0	0
	21000					g1_cycle en	g1_cycle[2]	g1_cycle[1]	g1_cycle[0]
<u> </u>	di cycle					0	0	0	0
	14:14	b1_on[3]	b1_on[2]	b1_on[1]	b1_on[0]	b1_off[3]	b1_off[2]	b1_off[1]	[0]#o_1d
<u> </u>		0	0	0	0	0	0	0	0
١,	-					b1_cycle en	b1_cycle[2]	b1_cycle[1]	b1_cycle[0]
8	BI Cycle					0	0	0	0
20	Ext. PWM control	wled1_4 _pwm	wled5_6 _pwm	r1_pwm	g1_pwm	b1_pwm	r2_pwm	g2_pwm	b2_pwm
		0	0	0	0	0	0	0	0
۲	CL SW		slope_w5_6	slope_w1_4	en_fade_w5_6	en_fade_w1_4	ldsip	en_w1_4	en_w5_6
 8	W LED CONTROL		0	0	0	0	0	0	0
	7				wled1	1_4[7:0]			
60	WLEDI-4	0	0	0	0	0	0	0	0
	, L				Med	wled5_6[7:0]			
-	WLED3-0	0	0	0	0	0	0	0	0
90	Enables	pwm_ sync	nstby	en_ boost			en_ autoload	rgb_s	rgb_sel[1:0]
		0	0	0			-	0	0
۲	000				dat	data[7:0]			
3	ADC output	0	0	0	0	0	0	0	0
-	+1104100 d				ooq	boost[7:0]			
	poost output	0	0	1	1	1	1	1	1
	**************************************							freq_sel[2:0]	
<u></u>	D11 15000								

ADDR (HEX)	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
10	HC_Flash		en_safety	hc_pwm	fl_t[fl_t[1:0]	hc[1:0]	:0]	en_ hcflash
			0	0	0	0	0	0	0
÷	מיס מיס מיס						rgb_start	dool	log
=	ratieili gell cili						0	0	0
13	PGB1 max climant			ir	ir1[1:0]	[0:1]1gi	[ib1[1:0]	1:0]
7	חשווי בשטי			0	0	0	0	0	0
7	CBOB Som CBOB			iri	ir2[1:0]	ig2[1:0]	[(ib2[1:0]	1:0]
<u> </u>	RGDZ Max current			0	0	0	0	0	0
•	t IGTO cano cibro		gain_sel[2:0]		sync_mode	en_agc	en_sync	input_sel[1:0]	el[1:0]
¥7	Audio sync CIRLI	0	0	0	0	0	0	1	1
ac	c IOTO cano cibir A				en_avg	mode_ctrl[1:0]	[1:0]	speed_ctrl[1:0]	otrl[1:0]
Q7	Audio sylic CTRE2				0	0	0	0	0
C	4.		r[2:0]			g[2:0]		cet[3:2]	3:2]
OC.	Command IA	0	0	0	0	0	0	0	0
14	OF PrommoO	5	cet[1:0]		b[2:0]			tt[2:0]	
		0	0	0	0	0	0	0	0
CJ	VC Procumo		r[2:0]			g[2:0]		cet[3:2]	3:2]
76	Collination	0	0	0	0	0	0	0	0
62	ac pusumoo	5	cet[1:0]		b[2:0]			tt[2:0]	
S	Collination 2D	0	0	0	0	0	0	0	0
17	Command 3A		r[2:0]			9[2:0]		cet[3:2]	3:2]
5		0	0	0	0	0	0	0	0
ŭ	Command 3B	٥	cet[1:0]		b[2:0]		Š	tt[2:0]	
3		0	0	0	0	0	0	0	0
,	Command 4A		r[2:0]			9[2:0]		cet[3:2]	3:2]
96		0	0	0	0	0	0	0	0
23	Command AB	0	cet[1:0]		b[2:0]			tt[2:0]	
6		0	0	0	0	0	0	0	0
0	Commond		r[2:0]			g[2:0]		cet[3:2]	3:2]
3		0	0	0	0	0	0	0	0
Q.	Command 5B	٥	cet[1:0]		b[2:0]			tt[2:0]	
3		0	0	0	0	0	0	0	0

ADDR	0.00		5	i	à	Š	6	à	á
(HEX)	אבוטוסו	' 0	90	US	D4	23	DZ	10	20
V U	V9 pubmacy		r[2:0]			g[2:0]		cet	cet[3:2]
¥,	Collination	0	0	0	0	0	0	0	0
9	9 6000000	0	cet[1:0]		b[2:0]			tt[2:0]	
a C		0	0	0	0	0	0	0	0
Ç	V Publication 7.0		r[2:0]			g[2:0]	,	cet	cet[3:2]
ဥ	Collination	0	0	0	0	0	0	0	0
2	Commond 7B	0	cet[1:0]		b[2:0]			tt[2:0]	
26		0	0	0	0	0	0	0	0
U U	40 Fundament		r[2:0]			g[2:0]		cet	cet[3:2]
30	Collinaina	0	0	0	0	0	0	0	0
22	90 600	5	cet[1:0]		b[2:0]			tt[2:0]	
LC	Collination	0	0	0	0	0	0	0	0
09	Reset			Writ	Writing any data to Reset Register resets LP39542	at Register resets LF	39542		

LP39542 Registers

REGISTER BIT EXPLANATIONS

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key	Bit Accessibility	
rw	Read/write	
r	Read only	
-01	Condition after POR	

RGB CTRL (00H) - RGB LEDS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
cc_rgb1	cc_rgb2	r1sw	g1sw	b1sw	r2sw	g2sw	b2sw
rw-1	rw-1	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

cc_rgb1	Bit 7	0 - R1, G1 and B1 are constant current sinks, current limited internally 1 - R1, G1 and B1 are switches, limit current with external ballast resistor
cc_rgb2	Bit 6	0 – R2, G2 and B2 are constant current sinks, current limited internally 1 – R2, G2 and B2 are switches, limit current with external ballast resistor
r1sw	Bit 5	0 - R1 disabled 1 - R1 enabled
g1sw	Bit 4	0 - G1 disabled 1 - G1 enabled
b1sw	Bit 3	0 – B1 disabled 1 – B1 enabled
r2sw	Bit 2	0 - R2 disabled 1 - R2 enabled
g2sw	Bit 1	0 – G2 disabled 1 – G2 enabled
b2sw	Bit 0	0 – B2 disabled 1 – B2 enabled

R1/G1/B1 BLINK (01H, 03H, 05H) - BLINKING ON/OFF TIME CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	R1/G1/B1	_ON[3:0]			R1/G1/B1	_OFF[3:0]	
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

		RGB1 ON a	and OFF time
		Bits	ON/OFF time
		0000	0%
		0001	1%
		0010	2.5%
		0011	5%
R1_ON[3:0],		0100	7.5%
R1_OFF[3:0]		0101	10%
G1_ON[3:0], G1_OFF[3:0] B1_ON[3:0],	Bito 7 4 2 0	0110	15%
	Bits 7-4, 3-0	0111	20%
		1000	30%
B1_OFF[3:0]		1001	40%
		1010	50%
		1011	60%
		1100	70%
		1101	80%
		1110	90%
		1111	100%

R1/G1/B1 CYCLE(02H, 04H, 06H) – BLINKING CYCLE CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
				R1/G1/ B1_CYCLE_EN		G1/B1_CYCLE[2:0]
r-0	r-0	r-0	r-0	rw-0	rw-0	rw-0	rw-0

R1_CYCLE_EN G1_CYCLE_EN B1_CYCLE_EN	Bit 3	1 ' '	tate is defined with RG ate is defined with blinl	•
R1_CYCLE[2:0]	Bits 2-0		RGB1 cycle time	
G1_CYCLE[2:0]		Bits	Blinking cycle time	Blinking frequency
B1_CYCLE[2:0]		000	0.1s	10 Hz
		001	0.25s	4 Hz
		010	0.5s	2 Hz
		011	1s	1 Hz
		100	2s	0.5 Hz
		101	3s	0.33 Hz
		110	4s	0.25 Hz
		111	5s	0.2 Hz

EXT_PWM_CONTROL (07H) - EXTERNAL PWM CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
wled1_4_pwm	wled5_6_pwm	r1_pwm	g1_pwm	b1_pwm	r2_pwm	g2_pwm	b2_pwm
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

wled1_4_pwm	Bit 7	0 – WLED1WLED4 PWM control disabled 1 – WLED1WLED4 PWM control enabled
wled5_6_pwm	Bit 6	0 – WLED5, WLED6 PWM control disabled
шошо_о_риш		1 – WLED5, WLED6 PWM control enabled
	D:+ C	0 - R1 PWM control disabled
r1_pwm	Bit 5	1 – R1 PWM control enabled
	D:4.4	0 - G1 PWM control disabled
g1_pwm	Bit 4	1 – G1 PWM control enabled
	D:: 0	0 – RB PWM control disabled
b1_pwm	Bit 3	1 – B1 PWM control enabled
•	0	0 - R2 PWM control disabled
r2_pwm	Bit 2	1 - R2 PWM control enabled
	D:: 4	0 - G2 PWM control disabled
g2_pwm	Bit 1	1 - G2 PWM control enabled
	D:+ 0	0 - B2 PWM control disabled
b2_pwm	Bit 0	1 – B2 PWM control enabled
	•	

WLED CONTROL (08H) – WLED CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	slope_w5_6	slope_w1_4	en_fade_w5_6	en_fade_w1_4	displ	en_w1_4	en_w5_6
r-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Bit 6	0 – WLED5-6 full range fade execution time 1.3s 1 – WLED5-6 full range fade execution time 0.65s
	5
Rit 5	0 – WLED1-4 full range fade execution time 1.3s
DIL 3	1 – WLED1-4 full range fade execution time 0.65s
Di+ 4	0 – disable fade for WLED5-6
BIT 4	1 – enable fade for WLED5-6
Bit 3	0 – disable fade for WLED1-4
	1 – enable fade for WLED1-4
D o	0 - WLED1-4 and WLED5-6 are controlled separately
Bit 2	1 - WLED1-4 and WLED5-6 are controlled with WLED1-4 controls
D., 4	0 – WLED1-4 disabled
Bit 1	1 – WLED1-4 enabled
5	0 – WLED5-6 disabled
Bit 0	1 – WLED5-6 enabled
	Bit 5

WLED1-4 (09H) – WLED1...WLED4 BRIGHTNESS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0	
	wled1_4[7:0]							
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	

			Adjustment
		wled1_4[7:0]	Typical driver current (mA)
		0000 0000	0
		0000 0001	0.1
		0000 0010	0.2
wled1_4[7:0]	Bits 7-0	0000 0011	0.3
		0000 0100	0.4
		1111 1101	25.3
		1111 1110	25.4
		1111 1111	25.5

WLED5-6 (0AH) – WLED5, WLED6 BRIGHTNESS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0		
wled5_6[7:0]									
rw-0									

			Adjustment
		wled5_6[7:0]	Typical driver current (mA)
		0000 0000	0
		0000 0001	0.1
		0000 0010	0.2
wled5_6[7:0]	Bits 7-0	0000 0011	0.3
		0000 0100	0.4
		1111 1101	25.3
		1111 1110	25.4
		1111 1111	25.5

ENABLES (0BH) – ENABLES REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
pwm_sync	nstby	en_boost	·		en_autoload	rgb_sel[1:0]	
rw-0	rw-0	rw-0	r-0	r-0	rw-1	rw-0	rw-0

pwm_sync	Bit 7	1	0 – synchronization to external clock disabled 1 – synchronization to external clock enabled					
nstby	Bit 6		0 – LP39542 standby mode 1 – LP39542 active mode					
en_boost	Bit 5		0 – boost converter disabled 1 – boost converter enabled					
en_autoload	Bit 2		0 – internal boost converter loader off 1 – internal boost converter loader on					
		Color LED control mode selection						
] Bits 1-0	rgb_sel[1:0]	Audio sync	Pattern generator	Blinking sequence			
umb col[1.0]		00	-	RGB1 & RGB2	-			
rgb_sel[1:0]				RGB2	RGB1			
		10	RGB2	RGB1	-			
		11	RGB1 & RGB2	-	-			

ADC_OUTPUT (0CH) - ADC DATA REGISTER

D7	D6	D5	D4	D3	D2	D1	D0	
	data[7:0]							
r-0 r-0 r-0 r-0 r-0 r-0								

`
nsors)
,

BOOST_OUTPUT (0DH) - BOOST OUTPUT VOLTAGE CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0		
	Boost[7:0]								
rw-0	rw-0	rw-1	rw-1	rw-1	rw-1	rw-1	rw-1		

			Adjustment
		Boost[7:0]	Typical boost output (V)
		0000 0000	4.00
		0000 0001	4.25
		0000 0011	4.40
Boost[7:0]	Bits 7-0	0000 0111	4.55
		0000 1111	4.70
		0001 1111	4.85
		0011 1111	5.00 (default)
		0111 1111	5.15
		1111 1111	5.30

BOOST_FRQ (0EH) – BOOST FREQUENCY CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	-			freq_sel[2:0]			
r-0	r-0	r-0	r-0	r-0	rw-1	rw-1	rw-1

		Adjustment				
freq_sel[2:0]	Bits 7-0	freq_sel[2:0]	Frequency			
		1xx	2.00 MHz			
		01x	1.67 MHz			
		00x	1.00 MHz			

HC_FLASH (10H) - HIGH CURRENT FLASH DRIVER CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	en_safety	hc_pwm	fl_t[1:0]		hc[1:0]		en_hcflash
r-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

	_				
Rit 6	0 - flash time	out feature disabled			
Dit 0	1 - flash timeout feature enabled				
Di+ 5	0 - ext. PWM for high current flash driver disabled				
DIL 3	1 – ext. PWM	l for high current flash driver enabled			
	Flas	sh duration for high current driver			
	fl_t[1:0]	Typical flash duration			
Dito 4.0	00	200 ms			
DIIS 4-3	01	400 ms			
	10	600 ms			
	11	EN_FLASH pin on duration			
	Current control for high current flash driver				
	hc[1:0]	current			
Dia- 0.4	00	0.25×I _{MAX(FLASH)}			
Bits 2-1	01	0.50×I _{MAX(FLASH)}			
	10	0.75×I _{MAX(FLASH)}			
	11	1.00×I _{MAX(FLASH)}			
Bit 0	0 – high curre	ent flash driver disabled			
	1 – high curre	ent flash driver enabled			
	Bit 6 Bit 5 Bits 4-3 Bits 2-1	Bit 6			

PATTERN_GEN_CTRL (11H) - PATTERN GENERATOR CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
				en_blink	rgb_start	loop	log
r-0	r-0	r-0	r-0	rw-0	rw-0	rw-0	rw-0

en blink	Bit 3	0 - blinking sequences start bit disabled
	Dit 0	1 - blinking sequences start bit enabled
rgb_start	Bit 2	0 – pattern generator disabled 1 – execution pattern starting from command 1
	Dit 2	1 – execution pattern starting from command 1
loop	Bit 1	0 – pattern generator loop disabled (single pattern) 1 – pattern generator loop enabled (execute until stopped)
ЮОР	DIL I	1 – pattern generator loop enabled (execute until stopped)
lon	Bit 0	0 – color intensity mode 0
log	Bil U	1 – color intensity mode 1

RGB1_MAX_CURRENT (12H) - RGB1 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	ir1[1:0]		ig1[1:0]	ib1[1:0]	
r-0	r-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

		Maxim	um current for R1 driver
		ir1[2:0]	Maximum output current
1.454.61	D:	00	0.25×I _{MAX}
ir1[1:0]	Bits 5-4	01	0.50×I _{MAX}
		10	0.75×I _{MAX}
		11	1.00×I _{MAX}
		Maxim	um current for G1 driver
	Bits 3-2	ig2[1:0]	Maximum output current
:1[1.0]		00	0.25×I _{MAX}
ig1[1:0]		01	0.50×I _{MAX}
		10	0.75×I _{MAX}
		11	1.00×I _{MAX}
		Maxim	um current for B1 driver
		ib1[1:0]	Maximum output current
!b.4.[4.0]	D:t- 4.0	00	0.25×I _{MAX}
ib1[1:0]	Bits 1-0	01	0.50×I _{MAX}
		10	0.75×I _{MAX}
		11	1.00×I _{MAX}

RGB2_MAX_CURRENT (13H) - RGB2 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
		ir2[1:0]		ig2[1:0]	ib2[1:0]
r-0	r-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

		Maxim	um current for R2 driver
		ir2[2:0]	Maximum output current
. 014 01	D'1 5 4	00	0.25×I _{MAX}
ir2[1:0]	Bits 5-4	01	0.50×I _{MAX}
		10	0.75×I _{MAX}
		11	1.00×I _{MAX}
		Maxim	um current for G2 driver
	Bits 3-2	ig2[1:0]	Maximum output current
:0[1.0]		00	0.25×I _{MAX}
ig2[1:0]		01	0.50×I _{MAX}
		10	0.75×I _{MAX}
		11	1.00×I _{MAX}
		Maxim	um current for B2 driver
		ib2[1:0]	Maximum output current
:1-0[4-0]	D:1- 4 0	00	0.25×I _{MAX}
ib2[1:0]	Bits 1-0	01	0.50×I _{MAX}
		10	0.75×I _{MAX}
		11	1.00×I _{MAX}

AUDIO_SYNC_CTRL1 (2AH) - AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 1

	D7	D6	D5	D4	D3	D2	D1	D0
	gain_sel[2:0]			sync_mode	en_agc	en_sync	input_s	sel[1:0]
Γ	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-1	rw-1

		Ir	nput signal gain control			
		gain_sel[2:0]	gain, dB			
		000	0 (default)			
		001	3			
gain_sel[2:0]	Bits 7-5	010	6			
gaiii_sei[2.0]	DIIS 7-3	011	9			
		100	12			
		101	15			
		110	18			
		111	21			
		Input filter mode control				
sync_mode	Bit 4	0 – Amplitude mode				
		1 – Frequency mode				
en_agc	Bit 3		utomatic gain control disabled			
			utomatic gain control enabled			
en_sync	Bit 2	0 – audio synchronization disabled				
		1 – audio synchronization enabled				
			ADC input selector			
		input_sel[1:0]	Input			
input_sel[1:0]	Bits 1-0	00	Single ended input signal (ASE)			
iiiput_sei[1.0]	ו פוום	01	Temperature measurement			
		10	Ambient light measurement			
		11	No input (default)			

AUDIO_SYNC_CTRL2 (2BH) - AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 2

D7	D6	D5	D4	D3	D2	D1	D0
		en_avg	mode_c	ctrl[1:0]	speed_	ctrl[1:0]	
r-0	r-0	r-0	rw-0	rw-0	rw-0	rw-0	rw-0

en_avg	Bit 4	0 – averaging disabled. f _{sample} = 122 Hz, data in register changes every 8.2 ms. 1 – averaging enabled. f _{sample} = 244 Hz, averaging of 64 samples, data in register changes every 262 ms (3.2Hz).			
mode_ctrl[1:0]	Bits 3-2	Filtering mode control			
		LEDs light response time to audio input			
		speed_ctrl[1:0]	Response		
amand atriff.01	Bits 1-0	00 FASTEST (d 01 FAST	FASTEST (default)		
speed_ctrl[1:0]	DIIS 1-0		FAST		
		10	MEDIUM		
		11	SLOW		

PATTERN CONTROL REGISTERS

Command_[1:8]A – Pattern Control Register A									
D7	D7 D6 D5 D4 D3 D2 D1 D0								
	r[2:0]		g[2:0]			cet[3:2]			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0		

Command_[1:8]B – Pattern Control Register B								
D7	D7 D6 D5 D4 D3 D2 D1 D0							
cet[1:0] b[2:			b[2:0]			tt[2:0]		
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0					rw-0			

			Red color intensit	ty		
		r[2:0]	current, %			
			log=0	log=1		
		000	0×I _{MAX}	0×I _{MAX}		
		001	7%×I _{MAX}	1%×I _{MAX}		
r[2:0]	Bits	010	14%×I _{MAX}	2%×I _{MAX}		
	7-5A	011	21%×I _{MAX}	4%×I _{MAX}		
		100	32%×I _{MAX}	10%×I _{MAX}		
		101	46%×I _{MAX}	21%×I _{MAX}		
		110	71%×I _{MAX}	46%×I _{MAX}		
		111	100%×I _{MAX}	100%×I _{MAX}		
		Green color intensity				
		g[2:0]	current, %			
			log=0	log=1		
		000	0×I _{MAX}	0×I _{MAX}		
		001	7%×I _{MAX}	1%×I _{MAX}		
g[2:0]	Bits 4-2A	010	14%×I _{MAX}	2%×I _{MAX}		
	4-2A	011	21%×I _{MAX}	4%×I _{MAX}		
		100	32%×I _{MAX}	10%×I _{MAX}		
		101	46%×I _{MAX}	21%×I _{MAX}		
		110	71%×I _{MAX}	46%×I _{MAX}		
		111	100%×I _{MAX}	100%×I _{MAX}		

		Commar	nd execution time		
		cet[3:0]	CET duration, ms		
		0000	197		
		0001	393		
		0010	590		
		0011	786		
		0100	983		
		0101	1180		
cet[3:0]	Bits 1-0A	0110	1376		
cei[3.0]	7-6B	0111	1573		
	, 05	1000	1769		
		1001	1966		
		1010	2163		
		1011	2359		
		1100	2556		
		1101	2753		
		1110	2949		
		1111	3146		
			Blue color intensit	у	
	Bits 5-3B	b[2:0]	current, %		
			log=0	log=1	
		000	0×I _{MAX}	0×I _{MAX}	
		001	7%×I _{MAX}	1%×I _{MAX}	
b[2:0]		010	14%×I _{MAX}	2%×I _{MAX}	
		011	21%×I _{MAX}	4%×I _{MAX}	
		100	32%×I _{MAX}	10%×I _{MAX}	
		101	46%×I _{MAX}	21%×I _{MAX}	
		110	71%×I _{MAX}	46%×I _{MAX}	
		111	100%×I _{MAX}	100%×I _{MAX}	
		Tra	nsition time		
		tt[2:0]	Transition time, ms		
		000	0		
		001	55		
tt[2:0]	Bits	010	110		
ււլ∠.0յ	2-0B	011	221		
		100	442		
		101	885		
		110	1770		
		111	3539		

RESET (60H) - RESET REGISTER

D7	D6	D5	D4	D3	D2	D1	D0				
	Writing any data to Reset Register in address 60H can reset LP39542										
w-0	w-0 w-0 w-0 w-0 w-0 w-0										

Physical Dimensions inches (millimeters) unless otherwise noted

The dimension for X1 ,X2 and X3 are as given:

- __ X1=3.00 mm ±0.03 mm
- __ X2=3.00 mm ±0.03 mm
- __ X3=0.60 mm ±0.075 mm

36-bump micro SMD Package, 3 x 3 x 0.6 mm, 0.5 mm pitch NS Package Number TLA36AAA

The dimension for X1 ,X2 and X3 are as given:

- __ X1=3.00 mm ±0.03 mm
- __ X2=3.00 mm ±0.03 mm
- __ X3=0.65 mm ±0.075 mm

36-bump micro SMDxt Package, 3 x 3 x 0.65 mm, 0.5 mm pitch NS Package Number RLA36AAA

See Application notes AN-1112 and AN-1412 for PCB design and assembly instructions.

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright@ 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560