

PAL16R8-5JC

20-Pin TTL Programmable Array Logic

The PAL 16R8 Family (PAL 16L8, PAL 16R8, PAL 16R6, PAL 16R4) includes the PAL 16R8-5/4 Series which provides the highest speed in the 20-pin TTL PAL device family, making the series ideal for high-performance applications. The PAL 16R8 Family is provided with standard 20-pin DIP and PLCC pinouts and a 28-pin PLCC pinout. The 28-pin PLCC pinout contains seven extra ground pins interleaved between the outputs to reduce noise and increase speed.

The family utilizes Advanced Micro Devices advanced trench-isolated bipolar process and fuselink technology. The devices provide user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.

The family allows the systems engineer to implement the design on-chip, by opening fuse links to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

© 2019 Rochester Electronics, LLC. All Rights Reserved 04152019

COM'L: -4/5/7/D/B/B-2/A

MIL: -- 10/12/B/B-2/A/B-4

PAL16R8 Family

20-Pin TTL Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- As fast as 4.5 ns maximum propagation delay
- Popular 20-pin architectures: 16L8, 16R8, 16R6, 16R4
- Programmable replacement for high-speed TTL logic
- Register preload for testability
- Power-up reset for initialization

GENERAL DESCRIPTION

The PAL16R8 Family (PAL16L8, PAL16R8, PAL16R6, PAL16R4) includes the PAL16R8-5/4 Series which provides the highest speed in the 20-pin TTL PAL device family, making the series ideal for high-performance applications. The PAL16R8 Family is provided with standard 20-pin DIP and PLCC pinouts and a 28-pin PLCC pinout. The 28-pin PLCC pinout contains seven extra ground pins interleaved between the outputs to reduce noise and increase speed.

The family utilizes Advanced Micro Devices' advanced trench-isolated bipolar process and fuse-link technology. The devices provide user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.

The family allows the systems engineer to implement the design on-chip, by opening fuse links to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device

 Extensive third-party software and programmer support through FusionPLD partners

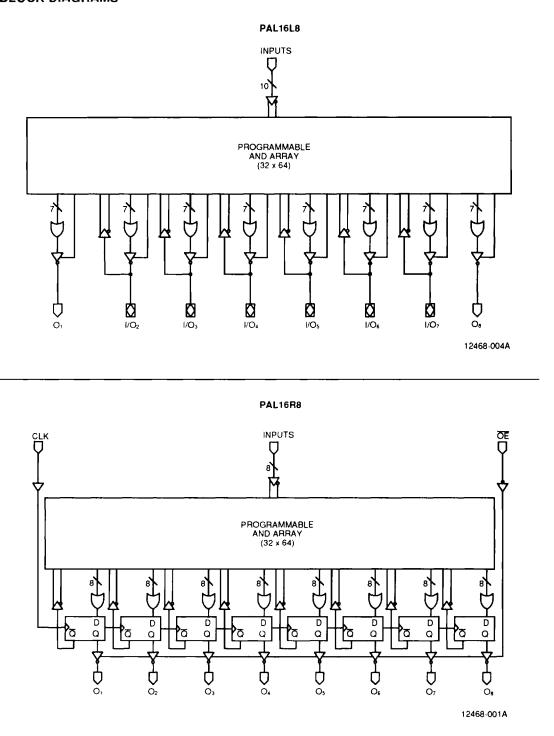
Advanced

Micro Devices

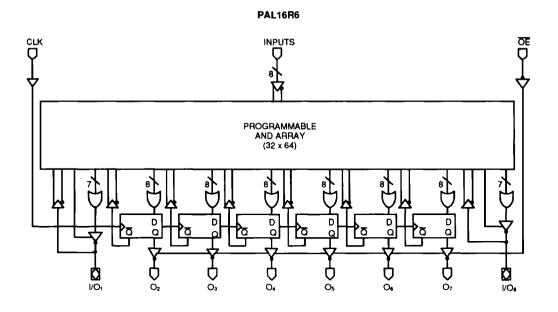
- 20-pin DIP and PLCC packages save space
- 28-pin PLCC-4 package provides ultra-clean high-speed signals

is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.

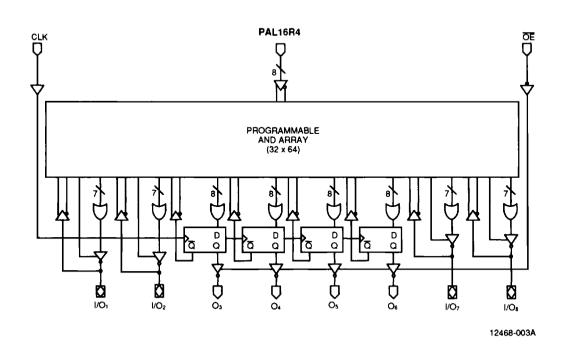
In addition, the PAL device provides the following options:

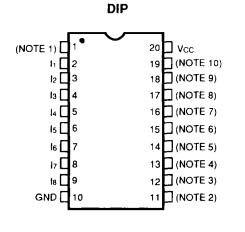

- Variable input/output pin ratio
- Programmable three-state outputs
- Registers with feedback

Product terms with all connections opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state. Registers consist of D-type flip-flops that are loaded on the LOW-to-HIGH transition of the clock. Unused input pins should be tied to Vcc or GND.

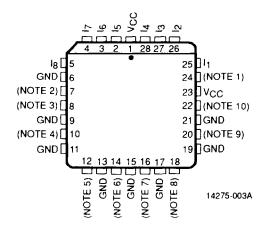

The entire PAL device family is supported by the FusionPLD partners. The PAL family is programmed on conventional PAL device programmers with appropriate personality and socket adapter modules. Once the PAL device is programmed and verified, an additional connection may be opened to prevent pattern readout. This feature secures proprietary circuits.

DEVICE	DEDICATED INPUTS	OUTPUTS	PRODUCT TERMS/ OUTPUT	FEEDBACK	ENABLE
PAL16L8	10	6 comb. 2 comb.	7 7 7	I/O 	prog. prog.
PAL16R8	8	8 reg.	8	reg.	pin
PAL16R6	8	6 reg. 2 comb.	8 7	reg. I/O	pin prog.
PAL16R4	8	4 reg. 4 comb.	8 7	reg. I/O	pin prog.

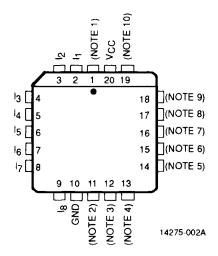

PRODUCT SELECTOR GUIDE


BLOCK DIAGRAMS

12468-002A



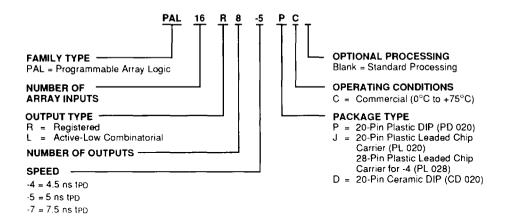
CONNECTION DIAGRAMS Top View



14275-001A

PIN DESIGNATIONS

CLK	Clock
GND	Ground
1	Input
I/O	Input/Output
0	Output
ŌĒ	Output Enable
Vcc	Supply Voltage


Note:

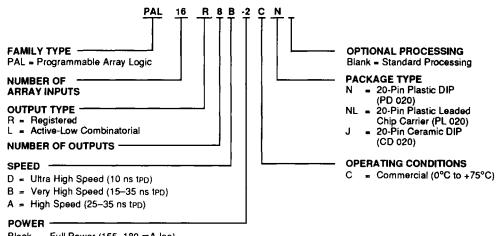
Pin 1 is marked for orientation.

Note	16L8	16R8	16R6	16R4
1	lo	CLK	CLK	CLK
2	te	ŌĒ	ŌĒ	ŌĒ
3	O1	O1	I/O1	I/O1
4	I/O2	O2	O2	I/O2
5	I/O3	O3	O3	O3
6	1/04	O4	O4	O₄
7	1/O5	O5_	O5	O5
8	I/O6	O_6	O6	O6
9	1/07	07	07	I/O7
10	O8	O8	I/O8	I/O8

ORDERING INFORMATION Commercial Products

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations				
PAL16L8				
PAL16R8				
PAL16R6	–5PC, –5JC, –4JC			
PAL16R4				
PAL16L8-7				
PAL16R8-7	PC, JC, DC			
PAL16R6-7				
PAL16R4-7				


Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, and to check on newly released combinations.

Note: Marked with AMD logo.

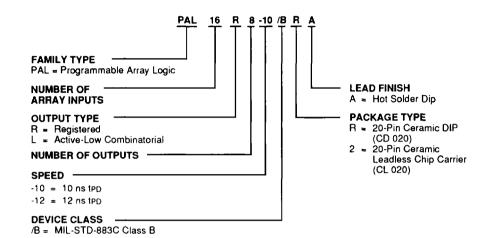
ORDERING INFORMATION Commercial Products (MMI Marking Only)

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

- Blank = Full Power (155-180 mA lcc)
- -2 = Half Power (80-90 mA lcc)
- -4 = Quarter Power (55 mA lcc)

Valid Combinations						
PAL16L8	D, B,	CN, CNL, CJ				
PAL16R8	B-2, A,					
PAL16R6	В-4					
PAL16R4]					

Valid Combinations


.

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, and to check on newly released combinations.

Note: Marked with MMI logo.

ORDERING INFORMATION APL Products

AMD programmable logic products for Aerospace and Defense applications are available with several ordering options. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
PAL16L8						
PAL16R8	10 10					
PAL16R6	-10, -12	/BRA, /B2A				
PAL16R4						

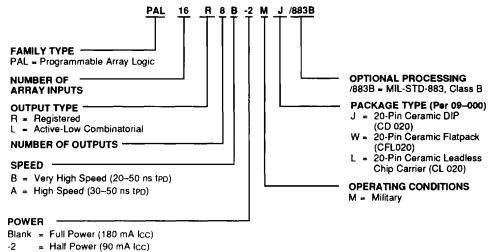
Group A Tests

Group A Tests consist of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11.

Military Burn-In

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Methods 1015, Conditions A through E. Test conditions are selected at AMD's option.

PAL16R8-10/12 (Mil)


Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Note: Marked with AMD logo.

ORDERING INFORMATION APL Products (MMI Marking Only)

AMD programmable logic products for Aerospace and Defense applications are available with several ordering options. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

-4 = Quarter Power (55 mA lcc)

Valid Combinations					
PAL16L8	B, B-2,	MJ/883B,			
PAL16R8	A, B-4	MW/883B,			
PAL16R6		ML/883B			
PAL16R4					

Group A Tests

Group A Tests consist of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11.

Military Burn-In

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Methods 1015, Conditions A through E. Test conditions are selected at AMD's option.

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional information on AMD's Standard Military grade products.

Note: Marked with MMI logo.

FUNCTIONAL DESCRIPTION Standard 20-pin PAL Family

The standard bipolar 20-pin PAL family devices have common electrical characteristics and programming procedures. Four different devices are available, including both registered and combinatorial devices. All parts are produced with a fuse link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Utilizing an easily-implemented programming algorithm, these products can be rapidly programmed to any customized pattern. Extra test words are preprogrammed during manufacturing to ensure extremely high field programming yields, and provide extra test paths to achieve excellent parametric correlation.

Pinouts

The PAL16R8 Family is available in the standard 20-pin DIP and PLCC pinouts and the PAL16R8-4 Series is available in the new 28-pin PLCC pinout. The 28-pin PLCC pinout gives the designer the cleanest possible signal with only 4.5 ns delay.

The PAL16R8-4 pinout has been designed to minimize the noise that can be generated by high-speed signals. Because of its inherently shorter leads, the PLCC package is the best package for use in high-speed designs. The short leads and multiple ground signals reduce the effective lead inductance, minimizing ground bounce. Placing the ground pins between the outputs optimizes the ground bounce protection, and also isolates the outputs from each other, eliminating cross-talk. This pinout can reduce the effective propagation delay by as much as 20% from a standard DIP pinout. Design files for PAL16R8-4 Series devices are written as if the device had a standard 20-pin DIP pinout for most design software packages.

Variable Input/Output Pin Ratio

The registered devices have eight dedicated input lines, and each combinatorial output is an I/O pin. The PAL16L8 has ten dedicated input lines and six of the eight combinatorial outputs are I/O pins. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

Programmable Three-State Outputs

Each output has a three-state output buffer with threestate control. On combinatorial outputs, a product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin and may be configured as a dedicated input if the output buffer is always disabled. On registered outputs, an input pin controls the enabling of the three-state outputs.

Registers with Feedback

Registered outputs are provided for data storage and synchronization. Registers are composed of D-type flip-flops that are loaded on the LOW-to-HIGH transition of the clock input.

Register Preload

The register on the PAL16R8 Family can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PAL16R8 Family will be HIGH due to the active-low outputs. The Vcc rise must be monotonic and the reset delay time is 1000 ns maximum.

Security Fuse

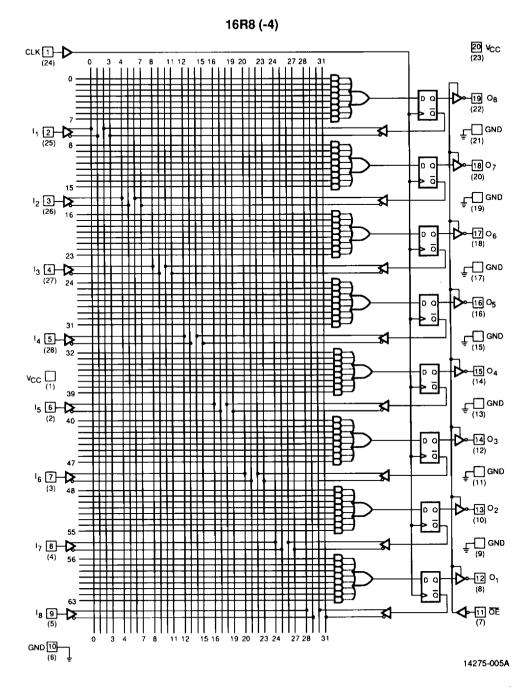
After programming and verification, a PAL16R8 Family design can be secured by programming the security fuse. Once programmed, this fuse defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security fuse is programmed, the array will read as if every fuse is programmed.

Quality and Testability

The PAL16R8 Family offers a very high level of built-in quality. Extra programmable fuses provide a means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

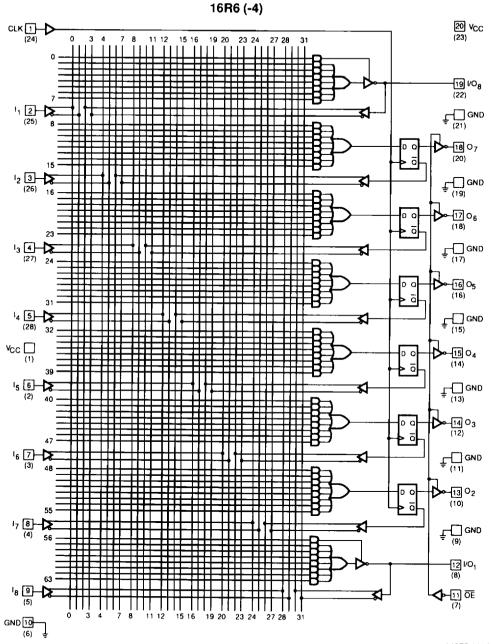
Technology

The PAL16R8 Family is fabricated with AMD's advanced trench-isolated bipolar process. This process reduces parasitic capacitances and minimum geometries to provide higher performance. The array connections are formed with proven TiW fuses for reliable operation. LOGIC DIAGRAM

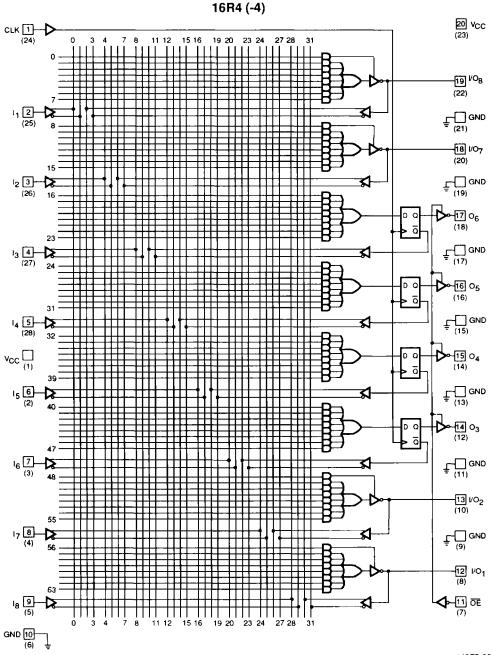

DIP and 20-Pin PLCC (28-Pin PLCC) Pinouts

16L8 (-4) 20 Vcc 1₀ 1-(24) (23) 34 0 78 11 12 15 16 19 20 23 24 27 28 31 11 H 19 O₈ -----HF (22) E + ++ 7 Ç____ GND 42 \$ ₽ ╈ (25) 8 (21) 18 1/07 Ē (20) 15 123-Ħ -₽ H ≤ (26) 16 17 1/06 ++ (18) 23 T 13 4 - 🔀 -----≼ (27) 24 Ē -16 I/O5 Ē (16) 31 Т 14 5-2 + Ŧ ≤ _____ GND _____(15) (28) 32 15 1/O4 (14) 39 15 6 ⊳ H ≴ П (2) 40 E (13) 14 1/03 Ē (12) 47 16 7--₽ Ħ \$₽ (3) 48 -13 1/02 (10) 55 17 8--⊳ ## Ħ $\overline{}$ \$₽ _____ GND ______(9) (4) 56 +1201 (8) 63 Ш -11 lg (7) 18 9 ▷ (5) | | | | 0 3 4 78 11 12 15 16 19 20 23 24 27 28 31 GND 10

14275-004A


(6)

LOGIC DIAGRAM DIP and 20-Pin PLCC (28-Pin PLCC) Pinouts


LOGIC DIAGRAM

DIP and 20-Pin PLCC (28-Pin PLCC) Pinouts

14275-006A

LOGIC DIAGRAM DIP and 20-Pin PLCC (28-Pin PLCC) Pinouts

14275-007A

Ambient Temperature with Power Applied	65°C to +150°C
Storage Temperature	-55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	-1.2 V to Vcc + 0.5 V
DC Input Current	-30 mA to +5 mA
DC Output or I/O Pin Voltage	-0.5~V to Vcc + 0.5 V
Static Discharge Voltage	2001 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Ambient Temperature (Ta) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA} V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		V
Vol	Output LOW Voltage	$ I_{OL} = 24 \text{ mA} \qquad V_{IN} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = Min. $		0.5	V
Vін	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ Vcc} = \text{Min}.$		-1.2	V
Ін	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max. (Note 2)		25	μА
lı	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 2)		-250	μA
4	Maximum Input Current	VIN = 5.5 V, Vcc = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	Vout = 2.7 V, Vcc = Max. ViN = ViH or ViL (Note 2)		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. ViN = ViH or ViL (Note 2)		-100	μA
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	VIN = 0 V, Outputs Open (lout = 0 mA) Vcc = Max.		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Descrip	otion	Test Conditions		Тур.	Unit
Cin	Input Capacitance	CLK, OE	VIN = 2.0 V	Vcc = 5.0 V	8	
		1 -1 8		TA = 25°C	5	pF
Соит	Output Capacitance)	Vout = 2.0 V	f = 1 MHz	8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

					-5		-4		
Parameter Symbol	Parameter Description					Max.	Min. (Note 3)	Max.	Unit
tpd	Input or Fee Combinatori		16L8, 16R8, 16R4	1	5	1	4.5	ns	
ts	Setup Time Feedback to	from Input or Clock		4.5		4.5		ns	
tн	Hold Time				0		0		ns
tco	Clock to Out	put			1	4.0	1	3.5	ns
tskewr	Skew Betwe Outputs (Not	en Registered le 4)		16R8, 16R6, 16R4		1		0.5	ns
tw∟		LOW HIGH			4		4		ns
twн	Clock Width				4		4		ns
	Maximum	External Feedback	1/(ts + tco)	1	117		125		MHz
fmax	Frequency	Internal Feedback (1	125		125		MHz
	(Note 5)	No Feedback	1/(twn + twL)	1	125		125		MHz
tezx	OE to Outpu	t Enable		1	1	6.5	1	6.5	ns
texz	OE to Outpu	t Disable]	1	5	1	5	ns
tea	Input to Out Product Terr	out Enable Using		16L8, 16R6,	2	6.5	2	6.5	ns
ter	Input to Out Product Terr	out Disable Using m Control		16R4	2	5	2	5	ns

Notes:

2. See Switching Test Circuit for test conditions.

- 3. Delay minimums for tPD, tCO, tPZX, tPXZ, tEA, and tER are chosen based on two considerations: they must allow for the large number of variables that define "best case" conditions, and they must attempt to anticipate possible future process enhancements that may increase performance. It is possible that such process improvements may someday push the minimum delays beyond what was originally anticipated; therefore minimums should be used with care, and are recommended primarily for simulation.
- 4. Skew testing takes into account pattern and switching direction differences between outputs.
- 5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	0.5 V to +7.0 V
DC Input Voltage	-1.2 V to +7.0 V
DC Input Current	-30 mA to +5 mA
DC Output or I/O Pin Voltage	0.5 V to Vcc + 0.5 V
Static Discharge Voltage	2001 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES Commercial (C) Devices

Ambient Temperature (TA) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		V
Vol	Output LOW Voltage	I _{OL} = 24 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min.		0.5	V
Vін	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
Vil	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ Vcc} = \text{Min}.$		-1.2	۷
Ін	Input HIGH Current	VIN = 2.7 V, Vcc = Max. (Note 2)		25	μA
hı.	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-250	μA
h	Maximum Input Current	VIN = 5.5 V, Vcc = Max.		1	mA
ЮZH	Off-State Output Leakage Current HIGH	Vout = 2.7 V, Vcc = Max. Vin = Vih or ViL (Note 2)		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. Vin = ViH or ViL (Note 2)		-100	μA
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lour = 0 mA) $V_{CC} = Max$.		180	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions		Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	$V_{CC} = 5.0 V$ $T_A = 25^{\circ}C$	5	DF
Соит	Output Capacitance	Vour = 2.0 V	f = 1 MHz	8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description				Min. (Note 3)	Max.	Unit
	Input or Feedb	ack to		16L8, 16R6,	3	7.5	
t PD	Combinatorial		Output Switching	16R4	3	7	ns
ts	Setup Time fro	m Input or Feedbac	m Input or Feedback to Clock		7		ns
tн	Hold Time				0		ns
tco	Clock to Outpu	t			3	6.5	ns
tskew	Skew Between	Registered Outputs (Note 4)		16R8, 16R6,		1	ns
twL	Clock Width	LOW		16R4	5		ns
twн		HIGH	HIGH		5		ns
	Maximum	External Feedba	ick 1/(ts + tco)]	74		MHz
fмах	Frequency	Internal Feedba	CK (font)		100		MHz
	(Note 5)	No Feedback	1/(twH + twL)		100		MHz
tezx	OE to Output E	nable		1	3	8	ns
texz	OE to Output D	isable		l	3	8	ns
tea	Input to Output	Enable Using Proc	Enable Using Product Term Control		3	10	ns
ten	Input to Output	Disable Using Pro	duct Term Control	16R4	3	10	ns

Notes:

2. See Switching Test Circuit for test conditions.

3. Output delay minimums are measured under best-case conditions.

4. Skew is measured with all outputs switching in the same direction.

5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	-1.5 V to +5.5 V
DC Output or I/O Pin Voltage	-0.5 V to +5.5 V
Static Discharge Voltage	2001 V

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (Ta) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA} V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		V
Vol	Output LOW Voltage	IoL = 24 mA VIN = VIH or VIL Vcc = Min.		0.5	V
Viн	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
VI	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min.		-1.5	V
ін	Input HIGH Current	VIN = 2.4 V, Vcc = Max. (Note 2)		25	μA
lır.	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 2)		-250	μA
l:	Maximum Input Current	VIN = 5.5 V, Vcc = Max.		100	μA
Югн	Off-State Output Leakage Current HIGH	Vout = 2.4 V, Vcc = Max. ViN = ViH or ViL (Note 2)	· 1	100	μA
lozl	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μA
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lout = 0 mA) Vcc = Max.		180	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditio	ins		Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	Vcc = 5.0 V	CLK, OE	9	
			TA = 25°C	Other inputs	2	pF
Соит	Output Capacitance	Vout = 2.0 V	f = 1 MHz	Outputs	4	r-

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	Parameter Description				Max.	Unit
tpd	Input or Feedba Combinatorial C				3	10	ns
ts	Setup Time from	n Input or Feedback to	Clock		10		ns
tн	Hold Time				0		ns
tco	Clock to Output				2	7	ns
tw∟	Clock Width	LOW			8		ns
twн		HIGH		16R8, 16R6,	8		ns
	Maximum	External Feedback	1/(ts + tco)	16R4	58.8		MHz
fмах	Frequency	Internal Feedback (ICNT)		60		MHz
	(Note 5)	No Feedback	1/(twн + twL)		62.5		MHz
tezx	OE to Output Er	nable			3	10	ns
texz	OE to Output Di	sable	sable		3	10	ns
tea	Input to Output I	Enable Using Product	Enable Using Product Term Control		1	10	ns
tER	Input to Output I	Disable Using Product	Term Control	16R4	1	10	ns

Notes:

- 2. See Switching Test Circuit for test conditions.
- 3. Output delay minimums are measured under best-case conditions.
- 4. Calculated from measured fMAX internal.
- 5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.5 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to Vcc + 0.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commerc	Device	3
A matrice of	 	

Ambient Temperature (TA) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		v
Vol	Output LOW Voltage	IoL = 24 mA VIN = VIH or VIL Vcc = Min.		0.5	v
Vін	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ V}_{CC} = \text{Min}.$		-1.2	V
Ін	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max. (Note 2)		25	μA
hı.	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-250	μA
h	Maximum Input Current	VIN = 5.5 V, Vcc = Max.		100	μA
ЮZH	Off-State Output Leakage Current HIGH	Vout = 2.4 V, Vcc = Max. ViN = ViH or ViL (Note 2)		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. ViN = ViH or ViL (Note 2)		-100	μA
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA) V _{CC} = Max.		180	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions	i	Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	$V_{CC} = 5.0 V$ $T_A = 25^{\circ}C$	8	
Соит	Output Capacitance	Vout = 2.0 V	f = 1 MHz	9	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	Parameter Description					Unit
tpd		Input or Feedback to Combinatorial Output		16L8, 16R6, 16R4		15	ns
ts	Setup Time from	m Input or Feedback to		15		ns	
tн	Hold Time			0		ns	
tco	Clock to Output	or Feedback			12	ns	
twL	Clock Width	LOW	LOW		10		ns
twн		HIGH		16R4	10		ns
4	Maximum	External Feedback	1/(ts + tco)		37		MHz
fmax	Frequency (Note 3)	No Feedback	1/(twn + twL)		50		MHz
tezx	OE to Output E	nable				15	ns
texz	OE to Output Disable					15	ns
1EA	Input to Output	Enable Using Product	Ferm Control	16L8, 16R6,		15	ns
tea	Input to Output	Disable Using Product	Term Control	16R4		15	ns

Notes:

2. See Switching Test Circuit for test conditions.

3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.5 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to Vcc + 0.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES Commercial (C) Devices

Ambient Temperature (TA) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		V
Vol	Output LOW Voltage	IoL = 24 mA VIN = VIH or VIL Vcc = Min.		0.5	v
Viн	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	v
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ V}_{CC} = \text{Min}.$		-1.2	V
lıн	Input HIGH Current	VIN = 2.7 V, Vcc = Max. (Note 2)		25	μA
la_	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 2)		-100	μΑ
h	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		100	μA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.7 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL}$ (Note 2)		100	μA
lozl	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 2)$		-100	μA
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	$V_{IN} \approx 0 \text{ V}$, Outputs Open (lout = 0 mA) $V_{CC} = Max$.		90	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions		Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	$V_{CC} = 5.0 V$	7	
Соит	Output Capacitance	Vout = 2.0 V	TA = 25°C f = 1 MHz	7	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	Parameter Description					Unit
tpd	Input or Feedba Combinatorial (16L8, 16R6, 16R4		25	ns	
ts	Setup Time from	m Input or Feedback to		25		ns	
tн	Hold Time			0		ns	
tco	Clock to Output	t			15	ns	
tw∟	Clock Width	LOW		16R8, 16R6,	15		ns
twн		HIGH		16R4	15		ns
	Maximum	External Feedback	1/(ts + tco)		25		MHz
f MAX	Frequency	Internal Feedback (ÍCNT)		28.5		MHz
	(Note 4)	No Feedback	1/(tw⊢ + tw⊾)		33		MHz
tezx	OE to Output E	nable				20	ns
texz	OE to Output D	OE to Output Disable				20	ns
tea	Input to Output	Input to Output Enable Using Product Term Control				25	ns
ter	Input to Output	Disable Using Product	Term Control	16R4		25	ns

Notes:

- 2. See Switching Test Circuit for test conditions.
- 3. Calculated from measured fMAx internal.
- 4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	0.5 V to +7.0 V
DC Input Voltage	-1.5 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to Vcc + 0.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T _A) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Descri	otion	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Volta	ge	l _{OH} = −3.2 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min.	2.4		V
Vol	Output LOW Voltag	je	$I_{OL} = 24 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$		0.5	v
Viн	Input HIGH Voltage)	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
ViL	, , , , , , , , , , , , , , , , , , ,		Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	>
Vi	Input Clamp Voltag	е	$l_{IN} = -18$ mA, Vcc = Min.		-1.2	V
Ін	Input HIGH Current		VIN = 2.7 V, Vcc = Max. (Note 2)		25	μA
lıL.	Input LOW Current		VIN = 0.4 V, Vcc = Max. (Note 2)		-250	μA
i:	Maximum Input Cu	rrent	VIN = 5.5 V, Vcc = Max.		100	μA
Іогн	Off-State Output Le Current HIGH	eakage	Vout = 2.7 V, Vcc = Max. Vin = Viн or Vil (Note 2)		100	μA
lozi	Off-State Output Le Current LOW	eakage	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μA
lsc	Output Short-Circu	it Current	Vour = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	16L8 16R8/6/4	V _{IN} = 0 V, Outputs Open (lout = 0 mA) Vcc = Max.		155 180	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vcc = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions	;	Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	Vcc = 5.0 V	7	
Соит	Output Capacitance	Vout = 2.0 V	TA = 25°C f = 1 MHz	7	рF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	Parameter Description					
t PD	Input or Feedback to Combinatorial Output			16L8, 16R6, 16R4		25	ns
ts	Setup Time from	m Input or Feedback to	Clock		25		ns
tн	Hold Time				0		ns
tco	Clock to Output					15	ns
twL	Clock Width	LOW			15		ns
twн		HIGH		16R8, 16R6,	15		ns
	Maximum	External Feedback	1/(ts + tco)	16R4	25		MHz
fmax	Frequency (Note 4)	Internal Feedback (fcnt)			28.5		MHz
		No Feedback	1/(twн + tw⊾)		33		MHz
tezx	OE to Output Enable					20	ns
texz	OE to Output Disable					20	ns
tea	Input to Output Enable Using Product Term Control			16L8, 16R6,		25	ns
ten	Input to Output	Disable Using Product	Term Control	16R4		25	ns

Notes:

- 2. See Switching Test Circuit for test conditions.
- 3. Calculated from measured fMAX internal.
- 4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	–1.5 V to +5.5 V
DC Output or I/O Pin Voltage	5.5 V

OPERATING RANGES Commercial (C) Devices

Ambient Temperature (T _A) Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc) with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$t_{OH} = -1 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		v
Vol	Output LOW Voltage	IOL = 8 mA VIN = VIH Or VIL Vcc = Min.		0.5	v
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		v
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	v
Vi	Input Clamp Voltage	lın = -18 mA, Vcc = Min.		-1.5	V
Ін	Input HIGH Current	VIN = 2.4 V, Vcc = Max. (Note 2)		25	μA
l _{ιL}	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 2)		250	μΑ
h	Maximum Input Current	VIN = 5.5 V, Vcc = Max.		100	μA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 2)}$		100	μA
lozl	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 2)$		-100	μA
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-250	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lour = 0 mA) Vcc = Max.		55	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 VOUT = 0.5 V as been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Desc	Parameter Description					Unit
tpd	Input or Feedback to Combinatorial Output			16L8, 16R6, 16R4		35	ns
ts	Setup Time from	Input or Feedback to	Clock		35		ns
tн	Hold Time			0		ns	
tco	Clock to Output of	or Feedback	16R8, 16R6,		25	ns	
tw	Clock Width	LOW		16R4	25		ns
twn		HIGH			25		ns
6	Maximum	External Feedback	1/(ts + tco)		16		MHz
fmax.	Frequency (Note 2)	No Feedback	1/(twn + twL)		20		MHz
tezx	OE to Output Enable					25	ns
texz	OE to Output Disable					25	ns
tea	Input to Output Enable Using Product Term Control			16L8, 16R6,		35	ns
ten	Input to Output E	isable Using Product	Term Control	16R4		35	ns

SWITCHING CHARACTERISTICS AVAL COMMERCIAL an availant va ann (Ninto 1)

Notes:

1. See Switching Test Circuit for test conditions.

2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

Storage Temperature	−65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.2 V to +5.5 V
DC Input Current	-30 mA to +5 mA
DC Output or I/O Pin Voltage	-0.5 V to Vcc + 0.5 V
Static Discharge Voltage	2001 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given are not tested.

OPERATING RANGES

miniary Devices (Note 1)	
Ambient Temperature (T _A) Operating in Free Air	–55°C Min.
Operating Case (Tc) Temperature	125°C Max.
Supply Voltage (Vcc) with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at Tc = +25°C, +125°C, and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		V
Vol	Output LOW Voltage	$ I_{OL} = 12 \text{ mA} \qquad V_{IN} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = Min. $		0.5	V
Vін	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
Vt	Input Clamp Voltage	$J_{IN} = -18 \text{ mA}, \text{ Vcc} = \text{Min}.$		-1.2	V
lн	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max. (Note 4)		25	μA
lı.	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-250	μA
h	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		1	mA
Югн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.7 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		100	μA
lozi	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		-100	μ A
Isc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lout = 0 mA) $V_{CC} = Max$.		200	mA

Notes:

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Descrip	tion	Test Conditions		Тур.	Unit
Cin	Input Capacitance	Corner Pins Middle Pins	VIN = 2.0 V	$V_{CC} = 5.0 V$ $T_A = 25^{\circ}C$	10 5	pF
Соит	Output Capacitance		Vout = 2.0 V	f = 1 MHz	9	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

					-10	1	-12		
Parameter Symbol	Parameter D	escription			Min. (Note 3)	Max.	Min. (Note 3)	Max.	Unit
ted	Input or Feedback to Combinatorial Output			16L8, 16R6, 16R4	3	10	3	12	ns
ts	Setup Time fr	rom Input or Feedbac	k to Clock		10		10		ns
tH	Hold Time				0		0		ns
tco	Clock to Outp	ut			2	9	3	11	ns
tskew	Skew Betwee	en Registered Output	1		1		1	ns	
twL		LOW		16R8, 16R6,	8		8		ns
twн	Clock Width	HIGH	HIGH		8		8		ns
	Maximum	External Feedback	1/(ts + tco)	1	52.6		47.6		MHz
t MAX	Frequency Internal Feedback (fcnt)	fcnt)	1	60.6		60.6		MHz	
	(Note 5)	No Feedback	1/(twn + twL)	1	62.5		62.5		MHz
tezx	OE to Output	Enable (Note 5)			1	10	1	12	ns
texz	OE to Output	ut Disable (Note 5)			1	10	1	12	ns
tea	Input to Outp Term Control	ut Enable Using Product (Note 5)		16L8,	1	10	1	12	ns
ter	Input to Outp Term Control	ut Disable Using Pro	16R6, 16R4	1	10	1	12	ns	

Notes:

 See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

3. Minimum value for tPD, tCO, tPZX, tPXZ, tEA, and tER parameters should be used for simulation purposes only and are not tested.

- 4. Skew is measured with all outputs switching in the same direction.
- 5. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	0.5 V to +7.0 V
DC Input Voltage	-1.5 V to + 5.5 V
DC Output or I/O Pin Voltage	5.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given are not tested.

OPERATING RANGES Military (M) Devices (Note 1)

-55°C Min.
125°C Max.
+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

 Military products are tested at Tc = +25°C, +125°C, and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		v
Vol	Output LOW Voltage	$I_{OL} = 12 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$		0.5	V
Viн	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		v
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ Vcc} = \text{Min}.$		-1.5	v
Ін	Input HIGH Current	VIN = 2.4 V, Vcc = Max. (Note 4)		25	μA
lı.	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 4)		-250	μA
	Maximum Input Current	Vin = 5.5 V, Vcc = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-100	μA
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lout = 0 mA) $V_{CC} = Max$.		180	mΑ

Notes:

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions		Тур.	Unit
Cin	Input Capacitance	Vin = 2.0 V	$V_{CC} = 5.0 V$	9	
Солт	Output Capacitance	Vout = 2.0 V	T _A = 25°C f = 1 MHz	10	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

Parameter Symbol	Parameter Des		Min.	Max.	Unit		
tpd	Input or Feedba Combinatorial C					20	ns
ts	Setup Time from	m Input or Feedback to	Clock		20		ns
tн	Hold Time			0		ns	
tco	Clock to Output	or Feedback			15	ns	
tw.		LOW		16R8, 16R6,	12		ns
twn	Clock Width	HIGH 16R4	HIGH		12		ns
fmax		External Feedback	1/(ts + tco)		28.5		MHz
Frequency (Note 3)		No Feedback	1/(twn + twL)	1	41.6		MHz
tezx	OE to Output E	nable (Note 4)				20	ns
texz	OE to Output D	isable (Note 4)				20	ns
t EA	Input to Output Enable Using Product Term Control (Note 4)		16L8, 16R6,		25	ns	
ten	Input to Output Term Control (1	Disable Using Product Note 4)		16R4		20	ns

Notes:

- See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	-1.5 V to +5.5 V
DC Output or I/O Pin Voltage	5.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given are not tested.

OPERATING RANGES Military (M) Devices (Note 1)

Minitary (M) Devices (NOIE I)	
Ambient Temperature (T _A) Operating in Free Air	-55°C Min.
Operating Case (Tc) Temperature	125°C Max.
Supply Voltage (Vcc) with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at Tc = +25°C, +125°C, and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

11010 2)					
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		>
Vol	Output LOW Voltage	$I_{OL} = 12 \text{ mA} \qquad V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$		0.5	v
Viн	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	v
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ Vcc} = \text{Min}.$		-1.5	V
lin	Input HIGH Current	VIN = 2.4 V, Vcc = Max. (Note 4)		25	μΑ
hi	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-250	μA
_ 1(Maximum Input Current	VIN = 5.5 V, Vcc = Max.		1	mA
Югн	Off-State Output Leakage Current HIGH	V _{OUT} = 2.4 V, V _{CC} = Max. V _{IN} = V _I H or V _{IL} (Note 4)		100	μА
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. VIN = VIH or VIL (Note 4)		-100	μΑ
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	VIN = 0 V, Outputs Open (Iout = 0 mA) Vcc = Max.		90	mA

Notes:

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 5. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions	}	Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	Vcc ≈ 5.0 V	7	
Соит	Output Capacitance	Vout = 2.0 V	T _A = 25°C f = 1 MHz	7	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified ' where capacitance may be affected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

Parameter Symbol	Parameter Des	scription		Min.	Max.	Unit	
tpd	Input or Feedba Combinatorial (30	ns
ts	Setup Time from	m Input or Feedback to	Clock		30		ns
tн	Hold Time				0		ns
tco	Clock to Output	or Feedback			20	ns	
twL	Clock Width	LOW		16R8, 16R6,	20		ns
twн		HIGH		16R4	20		ns
	Maximum	External Feedback	1/(ts + tco)		20		MHz
fmax	(Note 3)	No Feedback	1/(twn + twL)		25		MHz
tezx	OE to Output E	nable (Note 4)				25	ns
texz	OE to Output D	isable (Note 4)				25	ns
tea		t to Output Enable Using Product n Control (Note 4) 16		16L8, 16R6,		30	ns
ten	Input to Output Term Control (I	Disable Using Product Note 4)		16R4		30	ns

Notes:

- See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	–1.5 V to +5.5 V
DC Output or I/O Pin Voltage	5.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given are not tested.

OPERATING RANGES

military (M) Devices (Note I)	
Ambient Temperature (T _A) Operating in Free Air	–55°C Min.
Operating Case (Tc) Temperature	125°C Max.
Supply Voltage (Vcc) with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

 Military products are tested at Tc = +25°C, +125°C, and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		v
Vol.	Output LOW Voltage	IoL = 12 mA VIN = VIH or VIL Vcc = Min.		0.5	v
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		v
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
Vr	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ V}_{CC} = \text{Min}.$		-1.5	V
<u>Iн</u>	Input HIGH Current	VIN = 2.4 V, Vcc = Max. (Note 4)		25	μA
hr.	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 4)		-250	μA
li li	Maximum Input Current	VIN = 5.5 V, Vcc = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-100	μA
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	VIN = 0 V, Outputs Open (lout = 0 mA) Vcc = Max.		180	mA

Notes:

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description	Test Conditions	3	Тур.	Unit
Cin	Input Capacitance	VIN = 2.0 V	Vcc = 5.0 V	7	
Cour	Output Capacitance	Vout = 2.0 V	T _A = 25°C f = 1 MHz	7	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

Parameter Symbol	Parameter Description					Max.	Unit
tpd	Input or Feedba Combinatorial		16L8, 16R6, 16R4		30	ns	
ts	Setup Time from Input or Feedback to Clock				30		ns
tн	Hold Time	Id Time			0		ns
tco	Clock to Output	t or Feedback			20	ns	
tw.	Clock Width	ck Width LOW HIGH		16R8, 16R6,	20		ns
twн				16R4	20		ns
4	Maximum	External Feedback	1/(ts + tco)		20		MHz
Тмах	Frequency (Note 3)	No Feedback	1/(twn + twL)		25		MHz
tezx	OE to Output E	nable (Note 4)				25	ns
texz	OE to Output D	Dutput Disable (Note 4)				25	ns
t EA	Input to Output Enable Using Product Term Control (Note 4)		16L8, 16R6,		30	ns	
ter	Input to Output Disable Using Product Term Control (Note 4)			16R4		30	ns

Notes:

- 2. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	–1.5 V to +5.5 V
DC Output or I/O Pin Voltage	5.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given are not tested.

OPERATING RANGES

-55°C Min.
125°C Max.
+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at Tc = +25°C, +125°C, and -55°C, per MIL-STD-883.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -1 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		v
Vol	Output LOW Voltage	$i_{OL} = 4 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$		0.5	v
Vін	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		v
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
VI	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, \text{ V}_{CC} = \text{Min}.$		-1.5	V
Ιн	Input HIGH Current	VIN = 2.4 V, Vcc = Max. (Note 4)		25	μΑ
li.	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-250	μA
Î li Î	Maximum Input Current	V _{IN} = 5.5 V, Vcc = Max.		1	mA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. ViN = ViH or ViL (Note 4)		-100	μΑ
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 5)	-30	-250	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lout = 0 mA) $V_{CC} = Max$.		55	mA

Notes:

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

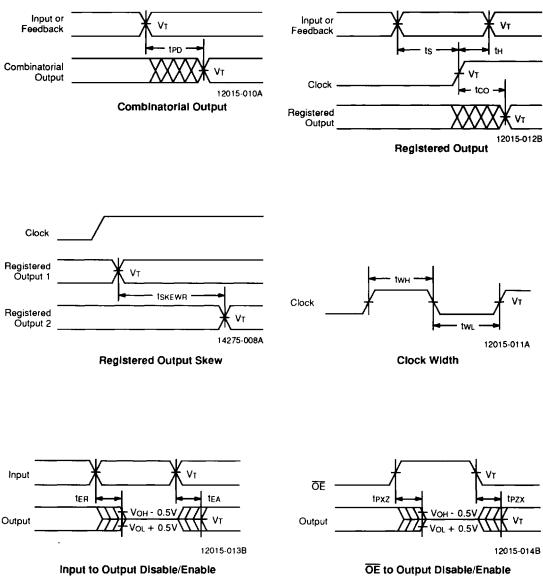
3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description					Max.	Unit
t PD	Input or Feedba Combinatorial (16L8, 16R6, 16R4		50	ns	
ts	Setup Time from Input or Feedback to Clock				50		ns
tн	Hold Time			0		ns	
tco	Clock to Output	t or Feedback			25	ns	
tw.	Clock Width	LOW		16R8, 16R6,	25		ns
twn		HIGH		16R4	25		ns
1max	Maximum	External Feedback	1/(ts + tco)		13.3		MHz
	Frequency (Note 2)	No Feedback	1/(twn + twL)		20		MHz
tezx	OE to Output Enable (Note 3)					25	ns
tpxz	OE to Output D	OE to Output Disable (Note 3)				25	ns
tea		nput to Output Enable Using Product Ferm Control (Note 3)				45	ns
ten	Input to Output Disable Using Product Term Control (Note 3)			16L8, 16R6, 16R4		45	ns

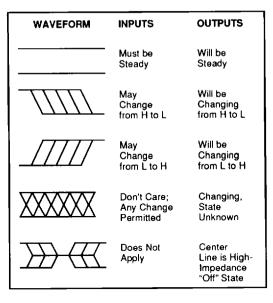
~~~~~ CHADACTEDICTICC *** A ALL IT A DV

Notes:

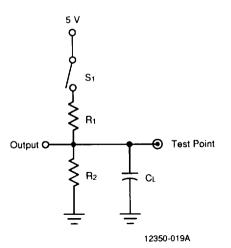

1. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.


SWITCHING WAVEFORMS

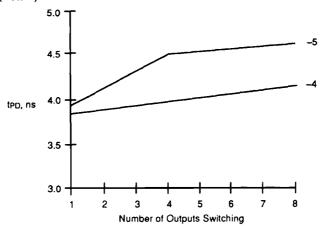
Notes:


- 1. VT = 1.5 V
- 2. Input pulse amplitude 0 V to 3.0 V
- 3. Input rise and fall times 2-3 ns typical.

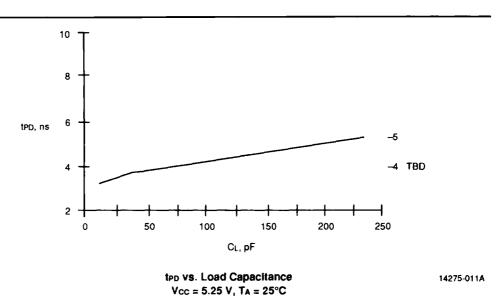
KEY TO SWITCHING WAVEFORMS

KS000010-PAL

SWITCHING TEST CIRCUIT

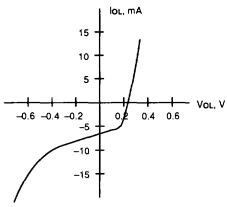


			Commercial		Measured
Specification	S1	CL	R1	R2	Output Value
tPD, tCO	Closed				1.5 V
tPZX, TEA	$Z \rightarrow H: Open$ $Z \rightarrow L: Closed$	50 pF	200 Ω	200 Ω	1.5 V
texz, ter	$H \rightarrow Z$: Open L $\rightarrow Z$: Closed	5 pF			$H \rightarrow Z$: Voh – 0.5 V L $\rightarrow Z$: Vol + 0.5 V

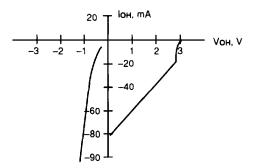

MEASURED SWITCHING CHARACTERISTICS for the PAL16R8-4/5

V_{CC} = 4.75 V, T_A = 75°C (Note 1)

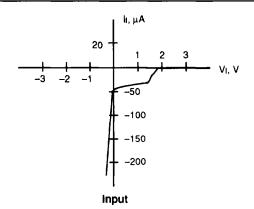
tPD vs. Number of Outputs Switching



Note:


1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where tPD may be affected.

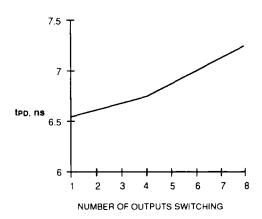
CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS for the PAL16R8-4/5 V_{CC} = 5.0 V, T_{A} = 25°C


Output, LOW

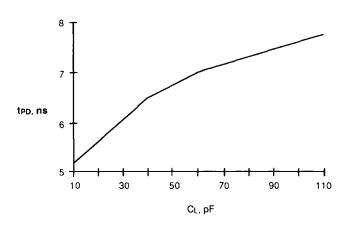
10240-003B

Output, HIGH

10240-004B



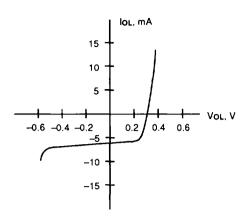
10240-005A


MEASURED SWITCHING CHARACTERISTICS for the PAL16R8-7

Vcc = 4.75 V, TA = 75°C (Note 1)

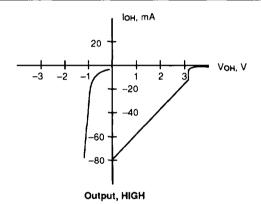
tPD vs. Number of Outputs Switching

10240-001A

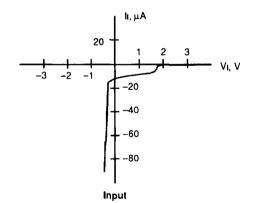

tpp vs. Load Capacitance

10240-002A

Note:

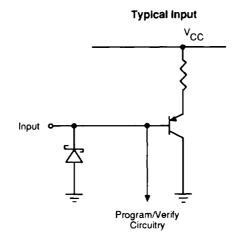

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where tPD may be affected.

CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS for the PAL16R8-7 V_{CC} = 5.0 V, T_A = 25 $^\circ C$

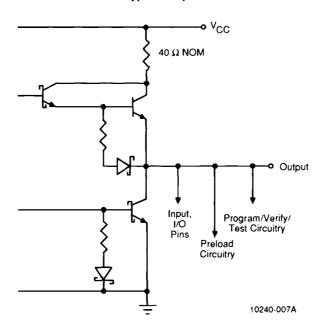


Output, LOW

10240-003A



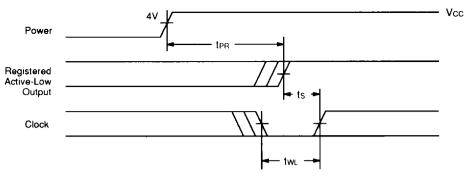
10240-004A



10240-005A

INPUT/OUTPUT EQUIVALENT SCHEMATICS

10240-006A


Typical Output

POWER-UP RESET

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will be HIGH due to the inverting output buffer. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways Vcc can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- 1. The Vcc rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Max.	Unit	
ter	Power-up Reset Time	1000	ns	
ts	Input or Feedback Setup Time	See Switching		
tw∟	Clock Width LOW	Characterist	Characteristics	

12350-024A

