512K x 32 Static RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
- Low active power
- 745 mW (max.)
- Operating voltages of $2.5 \pm 0.2 \mathrm{~V}$
- 1.5V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CE}}_{3}$ features
- Available in non Pb-free 119-ball pitch ball grid array package

Functional Description

The CY7C1062AV25 is a high-performance CMOS Static RAM organized as 524,288 words by 32 bits.

Writing to the device is accomplished by enabling the chip ($\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$ and $\overline{\mathrm{CE}}_{3} \mathrm{LOW}$) and forcing the Write Enable ($\left.\overline{\mathrm{WE}}\right)$ input LOW. If Byte Enable $A\left(B_{A}\right)$ is LOW, then data from I/O pins $\left(I / O_{0}\right.$ through $\left.I / O_{7}\right)$, is written into the location specified on the address pins (A_{0} through A_{18}). If Byte Enable $B\left(\bar{B}_{B}\right)$ is LOW, then data from I/O pins $\left(I / O_{8}\right.$ through $\left.I / O_{15}\right)$ is written into the location specified on the address pins (A_{0} through A_{18}). Likewise, $\overline{\mathrm{B}}_{\mathrm{C}}$ and $\overline{\mathrm{B}}_{\mathrm{D}}$ correspond with the I/O pins I/O O_{16} to I/O O_{23} and $\mathrm{I} / \mathrm{O}_{24}$ to $\mathrm{I} / \mathrm{O}_{31}$, respectively.
Reading from the device is accomplished by enabling the chip ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CE}}_{3} \mathrm{LOW}$) while forcing the Output Enable (OE) LOW and Write Enable (WE) HIGH. If the first Byte Enable (B_{A}) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$. If Byte Enable $B\left(B_{B}\right)$ is LOW, then data from memory will appear on $\mathrm{I} / \mathrm{O}_{8}$ to $\mathrm{I} / \mathrm{O}_{15}$. Similarly, $\overline{\mathrm{B}}_{\mathrm{C}}$ and $\overline{\mathrm{B}}_{\mathrm{D}}$ correspond to the third and fourth bytes. See the truth table at the back of this data sheet for a complete description of read and write modes.
The input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{31}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}_{1}$, $\overline{\mathrm{CE}}_{2}$ or $\mathrm{CE}_{3} \mathrm{HIGH}$), the outputs are disabled ($\overline{\mathrm{OE}}$ HIGH), the byte selects are disabled ($\mathrm{B}_{\mathrm{A}-\mathrm{D}} \mathrm{HIGH}$) or during a write operation ($\overline{C E}_{1}, \overline{C E}_{2}$, and $\overline{C E}_{3} \mathrm{LOW}$, and WE LOW).
The CY7C1062AV25 is available in a 119-ball pitch ball grid array (PBGA) package.

CY7C1062AV25
Selection Guide

		$\mathbf{- 1 0}$	Unit
Maximum Access Time	Com'//Ind'I	10	ns
Maximum Operating Current	Com'I/Ind'I	275	mA
Maximum CMOS Standby Current	50	mA	

Pin Configuration

119-ball PBGA

(Top View)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{A}	$\mathrm{I} / \mathrm{O}_{16}$	A	A	A	A	A	$\mathrm{I} / \mathrm{O}_{0}$
\mathbf{B}	$\mathrm{I} / \mathrm{O}_{17}$	A	A	$\overline{\mathrm{CE}}_{1}$	A	A	$\mathrm{I} / \mathrm{O}_{1}$
\mathbf{C}	$\mathrm{I} / \mathrm{O}_{18}$	$\overline{\mathrm{~B}}_{\mathrm{c}}$	$\overline{\mathrm{CE}}_{2}$	NC	$\overline{\mathrm{CE}}_{3}$	$\overline{\mathrm{~B}}_{\mathrm{a}}$	$\mathrm{I} / \mathrm{O}_{2}$
\mathbf{D}	$\mathrm{I} / \mathrm{O}_{19}$	$\mathrm{~V}_{\mathrm{DD}}$	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$\mathrm{I} / \mathrm{O}_{3}$
\mathbf{E}	$\mathrm{I} / \mathrm{O}_{20}$	$\mathrm{~V}_{\mathrm{SS}}$	V_{DD}	V_{SS}	V_{DD}	V_{SS}	$\mathrm{I} / \mathrm{O}_{4}$
\mathbf{F}	$\mathrm{I} / \mathrm{O}_{21}$	$\mathrm{~V}_{\mathrm{DD}}$	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$\mathrm{I} / \mathrm{O}_{5}$
\mathbf{G}	$\mathrm{I} / \mathrm{O}_{22}$	$\mathrm{~V}_{\mathrm{SS}}$	V_{DD}	V_{SS}	V_{DD}	V_{SS}	$\mathrm{I} / \mathrm{O}_{6}$
\mathbf{H}	$\mathrm{I} / \mathrm{O}_{23}$	$\mathrm{~V}_{\mathrm{DD}}$	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$\mathrm{I} / \mathrm{O}_{7}$
\mathbf{J}	NC	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	DNU
\mathbf{K}	$\mathrm{I} / \mathrm{O}_{24}$	$\mathrm{~V}_{\mathrm{DD}}$	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$\mathrm{I} / \mathrm{O}_{8}$
\mathbf{L}	$\mathrm{I} / \mathrm{O}_{25}$	$\mathrm{~V}_{\mathrm{SS}}$	V_{DD}	V_{SS}	V_{DD}	V_{SS}	$\mathrm{I} / \mathrm{O}_{9}$
\mathbf{M}	$\mathrm{I} / \mathrm{O}_{26}$	$\mathrm{~V}_{\mathrm{DD}}$	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$\mathrm{I} / \mathrm{O}_{10}$
\mathbf{N}	$\mathrm{I} / \mathrm{O}_{27}$	$\mathrm{~V}_{\mathrm{SS}}$	V_{DD}	V_{SS}	V_{DD}	V_{SS}	$\mathrm{I} / \mathrm{O}_{11}$
\mathbf{P}	$\mathrm{I} / \mathrm{O}_{28}$	$\mathrm{~V}_{\mathrm{DD}}$	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$\mathrm{I} / \mathrm{O}_{12}$
\mathbf{R}	$\mathrm{I} / \mathrm{O}_{29}$	A	$\overline{\mathrm{~B}}_{\mathrm{d}}$	NC	$\overline{\mathrm{B}}_{\mathrm{b}}$	A	$\mathrm{I} / \mathrm{O}_{13}$
\mathbf{T}	$\mathrm{I} / \mathrm{O}_{30}$	A	A	$\overline{\mathrm{WE}}$	A	A	$\mathrm{I} / \mathrm{O}_{14}$
\mathbf{U}	$\mathrm{I} / \mathrm{O}_{31}$	A	A	$\overline{\mathrm{OE}}$	A	A	$\mathrm{I} / \mathrm{O}_{15}$

PERFORM

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied. \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} \ldots .-0.5 \mathrm{~V}$ to +3.6 V
DC Voltage Applied to Outputs
in High-Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
.. \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW).. 20 mA
Static Discharge Voltage... >2001V
(per MIL-STD-883, Method 3015)
Latch-up Current... >200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		-10		Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.0		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.4	V
V_{IH}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	V
$\mathrm{I}_{1 \times}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	$\mu \mathrm{A}$
l_{Oz}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$, Output Disabled		-1	+1	$\mu \mathrm{A}$
${ }^{\text {ccc }}$	V_{CC} Operating Supply Current	$V_{C C}=M_{\text {ax }}, \mathrm{f}=\mathrm{f}_{\text {MAX }}=1 / \mathrm{t}_{\text {RC }}$	Com'//Ind'I		275	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-down Current-TTL Inputs	$\begin{aligned} & \operatorname{Max.}^{\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or }} \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'//Ind'I		100	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'//Ind'I		50	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	8	pF
$\mathrm{C}_{\mathrm{OUT}}$			10	pF

AC Test Loads and Waveforms ${ }^{[3]}$

Notes:

1. V_{IL} (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. Tested initially and after any design or process changes that may affect these parameters.
3. Valid SRAM operation does not occur until the power supplies have reached the minimum operating $V_{D D}(2.3 V)$. As soon as 1 ms ($T_{\text {power }}$) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention ($\mathrm{V}_{\mathrm{CCDR}}, 1.5 \mathrm{~V}$) voltage.

AC Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	-10		Unit
		Min.	Max.	
Read Cycle				
$\mathrm{t}_{\text {power }}$	V_{CC} (typical) to the first access ${ }^{[5]}$	1		ms
t_{RC}	Read Cycle Time	10		ns
t_{AA}	Address to Data Valid		10	ns
$\mathrm{t}^{\text {OHA }}$	Data Hold from Address Change	3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3}$ LOW to Data Valid		10	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to Low-Z ${ }^{[6]}$	1		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE }}$ HIGH to High-Z ${ }^{[6]}$		5	ns
tlzCe	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3}$ LOW to Low-Z ${ }^{[6]}$	3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3} \mathrm{HIGH}$ to High-Z ${ }^{[6]}$		5	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3}$ LOW to Power-up ${ }^{[7]}$	0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3} \mathrm{HIGH}$ to Power-down ${ }^{[7]}$		10	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		5	ns
tlzbe	Byte Enable to Low-Z ${ }^{[6]}$	1		ns
$\mathrm{t}_{\text {HZBE }}$	Byte Disable to High-Z ${ }^{[6]}$		5	ns

Write Cycle ${ }^{[8,9]}$

$\mathrm{t}_{\text {wc }}$	Write Cycle Time	10		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{CE}}_{3}$ LOW to Write End	7		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	7		ns
t_{HA}	Address Hold from Write End	0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	7		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	5.5		ns
t_{HD}	Data Hold from Write End	0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low-Z ${ }^{[6]}$	3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High-Z ${ }^{[6]}$		5	ns
t_{BW}	Byte Enable to End of Write	7		ns

Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.1 V , input pulse levels of 0 to 2.3 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and transmission line loads. Test conditions for the read cycle use output loading as shown in (a) of AC Test Loads, unless specified otherwise.
5. This part has a voltage regulator that steps down the voltage from 2.3 V to 2 V internally. $\mathrm{t}_{\text {power }}$ time has to be provided initially before a read/write operation is started.
6. $t_{\text {HZOE }}, t_{\text {HZCE }}, t_{\text {HZWE }}, t_{\text {HZBE }}$, and $t_{\text {LZOE }}, t_{\text {LZCE }}, t_{\text {LZWE }}$, and $t_{\text {LZBE }}$ are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage.
7. These parameters are guaranteed by design and are not tested
8. The internal write time of the memory is defined by the overlap of $\overline{C E} 1$ LOW, $\overline{C E} 2$ HIGH, $\overline{C E} 3$ LOW, and $\overline{W E}$ LOW. The chip enables must be active and $\overline{W E}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
9. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $\mathrm{t}_{\text {HZWE }}$ and t_{SD}

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[11,13]}$

10. Full device operation requires linear $V_{C c}$ ramp from $V_{D R}$ to $V_{C C(\text { min. })} \geq 100 \mu \mathrm{~s}$ or stable at $V_{C C(\text { min. })} \geq 100 \mu \mathrm{~S}$
11. Device is continuously selected. $\mathrm{OE}, \mathrm{CE}, \mathrm{B}_{\mathrm{A}}, \mathrm{B}_{\mathrm{B}}, \mathrm{B}_{\mathrm{C}}, \mathrm{B}_{\mathrm{D}}=\mathrm{V}_{\mathrm{IL}}$.
12. WE is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW

Switching Waveforms

Write Cycle No. 1 ($\overline{\text { CE Controlled }}{ }^{[14,15,16]}$

Write Cycle No. 2 ($\overline{\mathrm{BLE}}$ or $\overline{\mathrm{BHE}}$ Controlled) $)^{[14,15,16]}$

Notes:
14. $\overline{C E}$ indicates a combination of all three chip enables. When ACTIVE LOW, $\overline{\mathrm{CE}}$ indicates the $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{CE}}_{3}$ are LOW. 15. Data $/ / O$ is high-impedance if $\overline{\mathrm{OE}}$ or $\overline{\mathrm{B}}_{A}, \overline{\mathrm{~B}}_{\mathrm{B}}, \overline{\mathrm{B}}_{\mathrm{C}}, \overline{\mathrm{B}}_{\mathrm{D}}=\mathrm{V}_{I H}$.
16. If $\overline{C E}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW)

Truth Table

$\overline{\mathrm{CE}}_{1}$	$\overline{\mathrm{CE}}_{2}$	$\overline{C E}_{3}$	OE	WE	B_{A}	\bar{B}_{B}	$\bar{B}_{\text {c }}$	$\bar{B}_{\text {D }}$	$\begin{gathered} \mathrm{I} / \mathrm{O}_{0^{-}} \\ \mathrm{I} / \mathrm{O}_{7} \end{gathered}$	$\begin{aligned} & \mathrm{I} / \mathrm{O}_{8^{-}} \\ & \mathrm{I} / \mathrm{O}_{15} \end{aligned}$	$\begin{aligned} & \mathrm{I} / \mathrm{O}_{16}- \\ & \mathrm{I} / \mathrm{O}_{23} \end{aligned}$	$\begin{aligned} & \mathrm{I} / \mathrm{O}_{24} \\ & \mathrm{I} / \mathrm{O}_{31} \end{aligned}$	Mode	Power
H	H	H	X	X	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Power Down	($\mathrm{ISB}^{\text {) }}$
L	H	L	X	X	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Power Down	(ISB)
L	L	L	L	H	L	L	L	L	Data Out	Data Out	Data Out	Data Out	Read All Bits	($\mathrm{ICC}^{\text {) }}$
L	L	L	L	H	L	H	H	H	Data Out	High-Z	High-Z	High-Z	Read Byte A Bits Only	(l_{Cc})
L	L	L	L	H	H	L	H	H	High-Z	Data Out	High-Z	High-Z	Read Byte B Bits Only	(I_{cc})
L	L	L	L	H	H	H	L	H	High-Z	High-Z	Data Out	High-Z	Read Byte C Bits Only	(I_{cc})
L	L	L	L	H	H	H	H	L	High-Z	High-Z	High-Z	Data Out	Read Byte D Bits Only	(I_{cc})
L	L	L	X	L	L	L	L	L	Data In	Data In	Data In	Data In	Write All Bits	(I_{cc})
L	L	L	X	L	L	H	H	H	Data In	High-Z	High-Z	High-Z	Write Byte A Bits Only	(lcc)
L	L	L	X	L	H	L	H	H	High-Z	Data In	High-Z	High-Z	Write Byte B Bits Only	(${ }_{\mathrm{Cc}}$)
L	L	L	X	L	H	H	L	H	High-Z	High-Z	Data In	High-Z	Write Byte C Bits Only	(Icc)
L	L	L	X	L	H	H	H	L	High-Z	High-Z	High-Z	Data In	Write Byte D Bits Only	(ICC)
L	L	L	H	H	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Selected, Outputs Disabled	(ICc)

CY7C1062AV25

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1062AV25-10BGC	$51-85115$	$119-$ ball Plastic Ball Grid Array $(14 \times 22 \times 2.4 \mathrm{~mm})$	Commercial
	CY7C1062AV25-10BGI		Industrial	

Package Diagram

119-ball PBGA (14 x $22 \times 2.4 \mathrm{~mm}$) (51-85115)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1062AV25 512K x 32 Static RAM Document Number: 38-05333				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	119626	01/29/03	DFP	New Data Sheet
*A	493565	See ECN	NXR	Converted from Preliminary to Final Removed -8 and -10 speed bins Changed the description of I_{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated the ordering information table

