

November 2015

FODM121 Series, FODM124, FODM2701, FODM2705

4-Pin Full Pitch Mini-Flat Package Phototransistor Optocouplers

Features

- More than 5 mm Creepage/Clearance
- Compact 4-Pin Surface Mount Package (2.4 mm Maximum Standoff Height)
- · Current Transfer Ratio in Selected Groups:

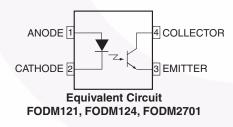
DC Input:

FODM121: 50–600% FODM121A: 100–300% FODM121B: 50–150% FODM121C: 100–200% FODM124: 100% MIN FODM2701: 50–300%

AC Input:

FODM2705: 50-300%

- Safety and Regulatory Approvals:
 - UL1577, 3,750 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage


Applications

- Digital Logic Inputs
- · Microprocessor Inputs
- · Power Supply Monitor
- · Twisted Pair Line Receiver
- Telephone Line Receiver

Description

The FODM121 series, FODM124, and FODM2701 consists of a gallium arsenide infrared emitting diode driving a phototransistor in a compact 4-pin mini-flat package. The lead pitch is 2.54 mm. The FODM2705 consists of two gallium arsenide infrared emitting diodes connected in inverse parallel for AC operation.

Functional Block Diagram

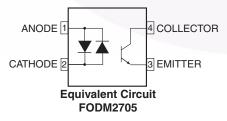


Figure 1. Schematic

Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification		40/110/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	904	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1060	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	565	V_{peak}
V_{IOTM}	Highest Allowable Over-Voltage	6000	V_{peak}
	External Creepage	≥ 5	mm
	External Clearance	≥ 5	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
T _S	Case Temperature ⁽¹⁾	150	°C
I _{S,INPUT}	Input Current ⁽¹⁾	200	mA
P _{S,OUTPUT}	Output Power ⁽¹⁾	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω

Note:

1. Safety limit values – maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ Unless otherwise specified.

Symbol	Parai	Value	Unit		
TOTAL PACK	\GE		1		
T _{STG}	Storage Temperature		-40 to +125	°C	
T _{OPR}	Operating Temperature		-40 to +110	°C	
T _J	Junction Temperature		-40 to +125	°C	
T _{SOL}	Lead Solder Temperature		260 for 10 sec	°C	
EMITTER			<u>.</u>		
I _{F (avg)}	Continuous Forward Current		50	mA	
I _{F (pk)}	Peak Forward Current (1 µs puls	se, 300 pps.)	1	Α	
V _R	Reverse Voltage		6	V	
Б	Power Dissipation		70	mW	
P_{D}	Derate linearly (Above 75°C)		1.41	mW/°C	
DETECTOR					
I _C	Continuous Collector Current		80	mA	
M	Oallandar Fasittan Vallana	FODM121 Series, FODM124	80	1.7	
V_{CEO}	Collector-Emitter Voltage	FODM2701, FODM2705	40	V	
V _{ECO}	Emitter-Collector Voltage		6	V	
Ь	Power Dissipation		150	mW	
P_{D}	Derate linearly (Above 80°C)		3.27	mW/°C	

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
INDIVIDU	AL COMPONENT CHAR	ACTERISTICS					
Emitter							
	FODM121 Series, FODM124	I _F = 10 mA	1.0		1.3	V	
V_{F}	Forward Voltage	FODM2701	$I_F = 5 \text{ mA}$			1.4	V
		FODM2705	$I_F = \pm 5 \text{ mA}$			1.4	
I _R	Reverse Current	FODM121 Series, FODM124, FODM2701	V _R = 5 V			5	μА
Detector							
DV	Collector-Emitter	FODM121 Series, FODM124		80			\ \/
BV _{CEO}	Breakdown Voltage	FODM2701, FODM2705	I _C = 1 mA, I _F = 0	40			V
BV _{ECO}	Emitter-Collector Breakdown Voltage	All	I _E = 100 μA, I _F = 0	7			V
I _{CEO}	Collector Dark Current	All	$V_{CE} = 40 \text{ V}, I_F = 0$			100	nA
C _{CE}	Capacitance	All	V _{CE} = 0 V, f = 1 MHz		10		pF
TRANSFE	R CHARACTERISTICS						
		FODM2701	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	50		300	%
		FODM2705	$I_F = \pm 5 \text{ mA}, V_{CE} = 5 \text{ V}$	50		300	
		FODM121	I _F = 5 mA, V _{CE} = 5 V	50		600	
CTR	DC Current Transfer	FODM121A		100		300	
CIK	Ratio	FODM121B		50		150	
		FODM121C		100		200	
		FODM124	$I_F = 1 \text{ mA}, V_{CE} = 0.5 \text{ V}$	100		1200	
			$I_F = 0.5 \text{ mA}, V_{CE} = 1.5 \text{ V}$	50			
	CTR Symmetry	FODM2705	$I_F = \pm 5 \text{ mA}, V_{CE} = 5 \text{ V}$	0.3		3.0	
		FODM121 Series	$I_F = 8 \text{ mA}, I_C = 2.4 \text{ mA}$			0.4	
V	Caturation Valtage	FODM124	$I_F = 1 \text{ mA}, I_C = 0.5 \text{ mA}$			0.4	
VCE(SAT)	Saturation Voltage	FODM2701	$I_F = 10 \text{ mA}, I_C = 2 \text{ mA}$			0.3	- V
		FODM2705	$I_F = \pm 10 \text{ mA}, I_C = 2 \text{ mA}$			0.3	
t _r	Rise Time (Non-Saturated)	All	I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω		3		μs
t _f	Fall Time (Non-Saturated)	All	I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω		3		μs
ISOLATIC	N CHARACTERISTICS						
V _{ISO}	Steady State Isolation Voltage ⁽²⁾	All	1 minute	3750			VAC _{RMS}

Note:

2. Steady state isolation voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, pins 1 and 2 are common, and pins 3 and 4 are common.

Typical Performance Curves

 $T_A = 25$ °C unless otherwise specified.

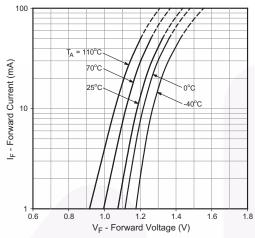


Fig. 3 Forward Current vs. Forward Voltage

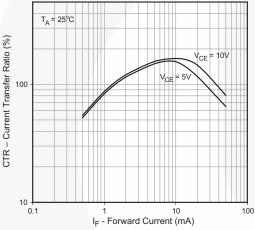


Fig. 5 Current Transfer Ratio vs. Forward Current (FODM121/2701/2705)

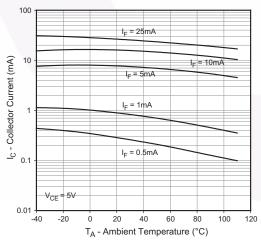


Fig. 7 Collector Current vs. Ambient Temperature (FODM121/2701/2705)

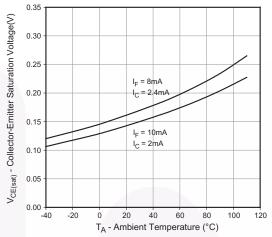


Fig. 4 Collector-Emitter Saturation Voltage vs. Ambient Temperature (FODM121/2701/2705)

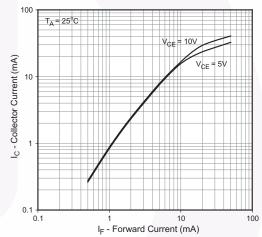


Fig. 6 Collector Current vs. Forward Current (FODM121/2701/2705)

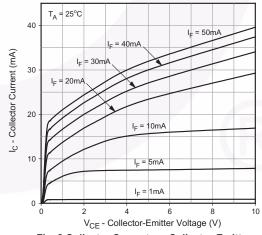


Fig. 8 Collector Current vs. Collector-Emitter Voltage (FODM121/2701/2705)

Typical Performance Curves (Continued)

 $T_A = 25$ °C unless otherwise specified.

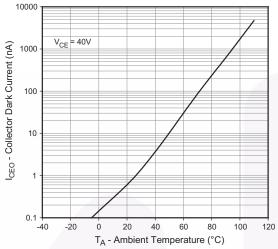


Fig 9. Collector Dark Current vs. Ambient Temperature (FODM121/2701/2705)

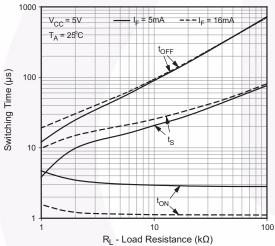


Fig. 11 Switching Time vs. Load Resistance (FODM121/2701/2705)

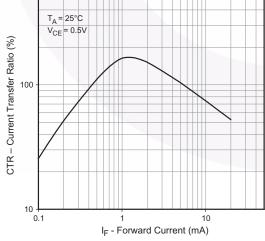


Fig. 13 Current Transfer Ratio vs. Forward Current (FODM124)

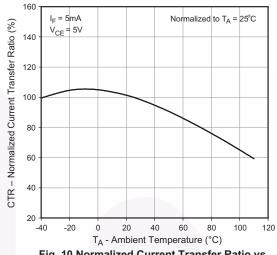


Fig. 10 Normalized Current Transfer Ratio vs. Ambient Temperature (FODM121/2701/2705)

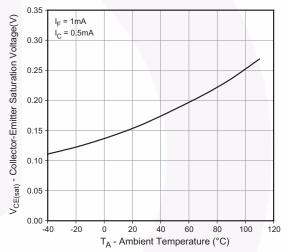


Fig. 12 Collector-Emitter Saturation Voltage vs. Ambient Temperature (FODM124)

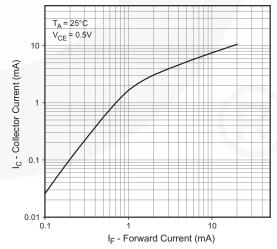


Fig 14. Collector Current vs. Forward Current (FODM124)

Typical Performance Curves (Continued)

 $T_A = 25$ °C unless otherwise specified.



Fig 15. Collector Current vs. Ambient Temperature (FODM124)

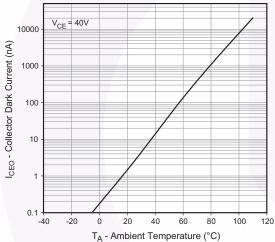


Fig. 17 Collector Dark Current vs. Ambient Temperature (FODM124)

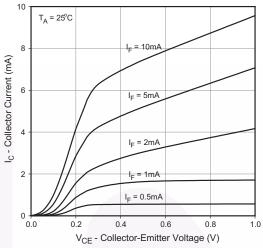


Fig. 16 Collector Current vs. Collector-Emitter Voltage (FODM124)

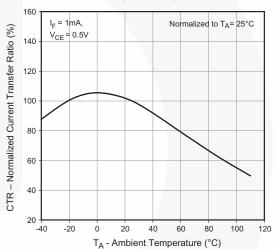


Fig. 18 Normalized Current Transfer Ratio vs. Ambient Temperature (FODM124)

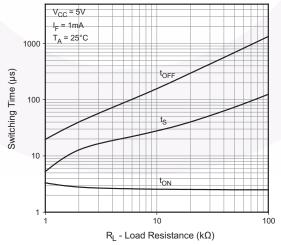
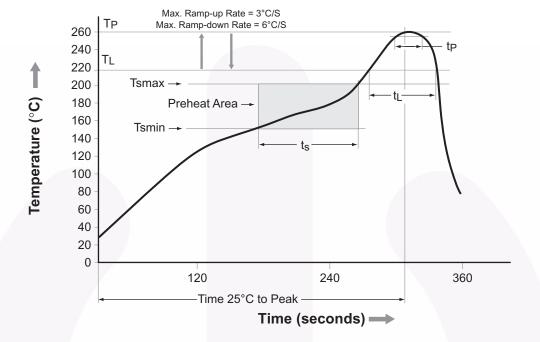



Fig. 19 Switching Time vs. Load Resistance (FODM124)

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60-150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C 30 seconds	
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

Ordering Information

Part Number	Package	Packing Method
FODM121	Full Pitch Mini-Flat 4-Pin	Tube (100 units)
FODM121R2	Full Pitch Mini-Flat 4-Pin	Tape and Reel (2500 Units)
FODM121V	Full Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 Units)
FODM121R2V	Full Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (2500 Units)

Note:

The product orderable part number system listed in this table also applies to the FODM121A, FODM121B, FODM121C, FODM124, FODM2701, and FODM2705 products.

Marking Information

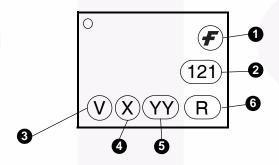
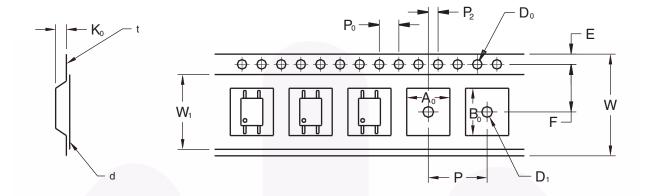
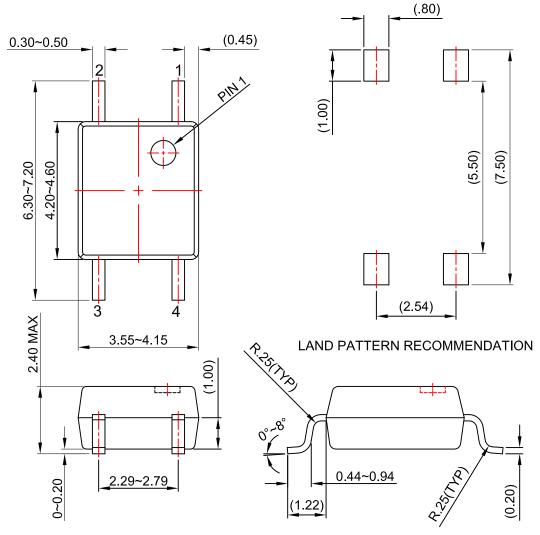



Figure 20. Top Mark

Table 1. Top Mark Definitions


1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "5"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

Carrier Tape Specifications

		2.54 Pitch
Description	Symbol	Dimensions
Tape Width	W	12.00±0.4
Tape Thickness	t	0.35±0.02
Sprocket Hole Pitch	P ₀	4.00±0.20
Sprocket Hole Dia.	D ₀	1.55±0.20
Sprocket Hole Location	E	1.75±0.20
Pocket Location	F	5.50±0.20
	P ₂	2.00±0.20
Pocket Pitch	Р	8.00±0.20
Pocket Dimension	A ₀	4.75±0.20
	B ₀	7.30±0.20
	K ₀	2.30±0.20
Pocket Hole Dia.	D ₁	1.55±0.20
Cover Tape Width	W ₁	9.20
Cover Tape Thickness	d	0.065±0.02
Max. Component Rotation or Tilt		20° max
Devices Per Reel		2500
Reel Diameter		330 mm (13")

2 E4 Ditab

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVISION: MKT-MFP04Crev3.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

TM TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177