Amplifier Transistor

PNP Silicon

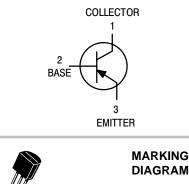
Features

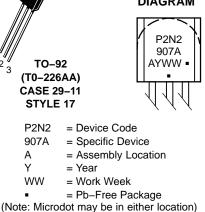
• Pb–Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	-60	Vdc	
Collector – Base Voltage	V _{CBO}	-60	Vdc	
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc	
Collector Current – Continuous	Ι _C	-600	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–55 to +150	°C	

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]			
P2N2907A	TO-92	5000 Units / Bulk			
P2N2907AG	TO-92 (Pb-Free)	5000 Units / Bulk			
P2N2907ARL1	TO-92	2000 / Tape & Reel			
P2N2907ARL1G	TO-92 (Pb-Free)	2000 / Tape & Reel			
P2N2907AZL1	TO-92	2000 / Tape & Ammo			
P2N2907AZL1G	TO-92 (Pb-Free)	2000 / Tape & Ammo			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Charac	Characteristic			Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note $(I_C = -10 \text{ mAdc}, I_B = 0)$; 1)	V _{(BR)CEO}	-60	-	Vdc
Collector – Base Breakdown Voltage $(I_C = -10 \ \mu Adc, I_E = 0)$		V _{(BR)CBO}	-60	-	Vdc
Emitter – Base Breakdown Voltage $(I_E = -10 \ \mu Adc, I_C = 0)$		V _{(BR)EBO}	-5.0	-	Vdc
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -0.5 Vdc)		I _{CEX}	_	-50	nAdc
Collector Cutoff Current ($V_{CB} = -50$ Vdc, $I_E = 0$) ($V_{CB} = -50$ Vdc, $I_E = 0$, $T_A = 150^{\circ}C$)		I _{CBO}		-0.01 -10	μAdc
Emitter Cutoff Current ($V_{EB} = -3.0 \text{ Vdc}$)		I _{EBO}	_	-10	nAdc
Collector Cutoff Current ($V_{CE} = -10 \text{ V}$)		I _{CEO}	-	-10	nAdc
Base Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -0.5 Vdc)	I _{BEX}	-	-50	nAdc	
ON CHARACTERISTICS					<u>.</u>
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C}=-0.1 \text{ mAdc}, \text{ V}_{CE}=-10 \text{ Vdc}) \\ (I_{C}=-1.0 \text{ mAdc}, \text{ V}_{CE}=-10 \text{ Vdc}) \\ (I_{C}=-10 \text{ mAdc}, \text{ V}_{CE}=-10 \text{ Vdc}) \\ (I_{C}=-150 \text{ mAdc}, \text{ V}_{CE}=-10 \text{ Vdc}) \text{ (Note} \\ (I_{C}=-500 \text{ mAdc}, \text{ V}_{CE}=-10 \text{ Vdc}) \text{ (Note} \end{array} $		h _{FE}	75 100 100 100 50	- - 300 -	_
Collector – Emitter Saturation Voltage (Note 1) ($I_C = -150 \text{ mAdc}$, $I_B = -15 \text{ mAdc}$) ($I_C = -500 \text{ mAdc}$, $I_B = -50 \text{ mAdc}$)		V _{CE(sat)}		-0.4 -1.6	Vdc
Base – Emitter Saturation Voltage (Note 1) ($I_C = -150 \text{ mAdc}$, $I_B = -15 \text{ mAdc}$) ($I_C = -500 \text{ mAdc}$, $I_B = -50 \text{ mAdc}$)			-	-1.3 -2.6	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product (Notes 1 and 2) ($I_C = -50$ mAdc, $V_{CE} = -20$ Vdc, f = 100 MHz)		fT	200	-	MHz
Output Capacitance ($V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{obo}	_	8.0	pF
Input Capacitance (V _{EB} = -2.0 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	30	pF
SWITCHING CHARACTERISTICS			-		<u>.</u>
Turn–On Time		t _{on}	-	50	ns
Delay Time	$(V_{CC} = -30 \text{ Vdc}, I_C = -150 \text{ mAdc},$ $I_{B1} = -15 \text{ mAdc})$ (Figures 1 and 5)	t _d	-	10	ns
Rise Time		t _r	-	40	ns
Turn–Off Time		t _{off}	-	110	ns
Storage Time	$(V_{CC} = -6.0 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = I_{B2} = -15 \text{ mAdc}) \text{ (Figure 2)}$	ts	-	80	ns
Fall Time	$B_1 = B_2 = 10 \text{ mAdd} (1 \text{ gale } 2)$	t,	_	30	ns

Fall Time

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%. 2. f_T is defined as the frequency at which |h_{fe}| extrapolates to unity.

30

ns

_

t_f

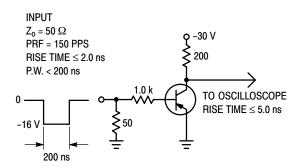
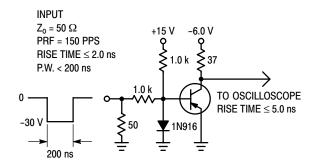
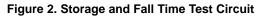




Figure 1. Delay and Rise Time Test Circuit

TYPICAL CHARACTERISTICS

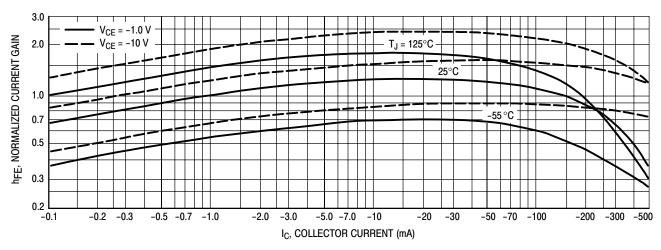
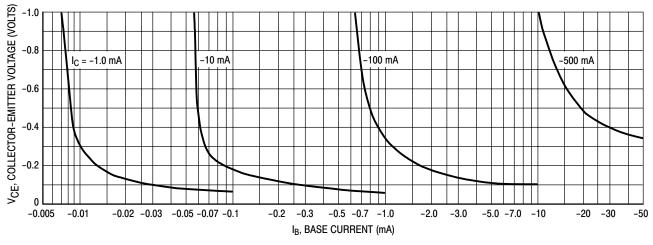
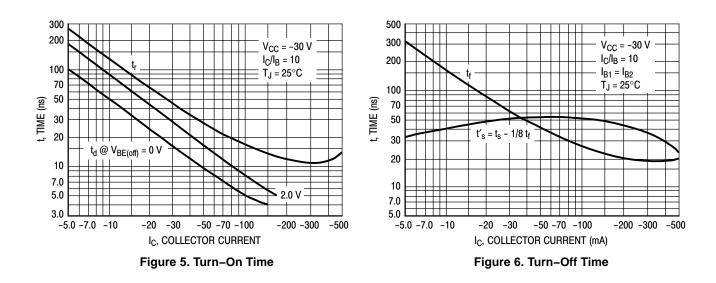




Figure 3. DC Current Gain

TYPICAL SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 V_{CE} = 10 Vdc, T_A = 25°C

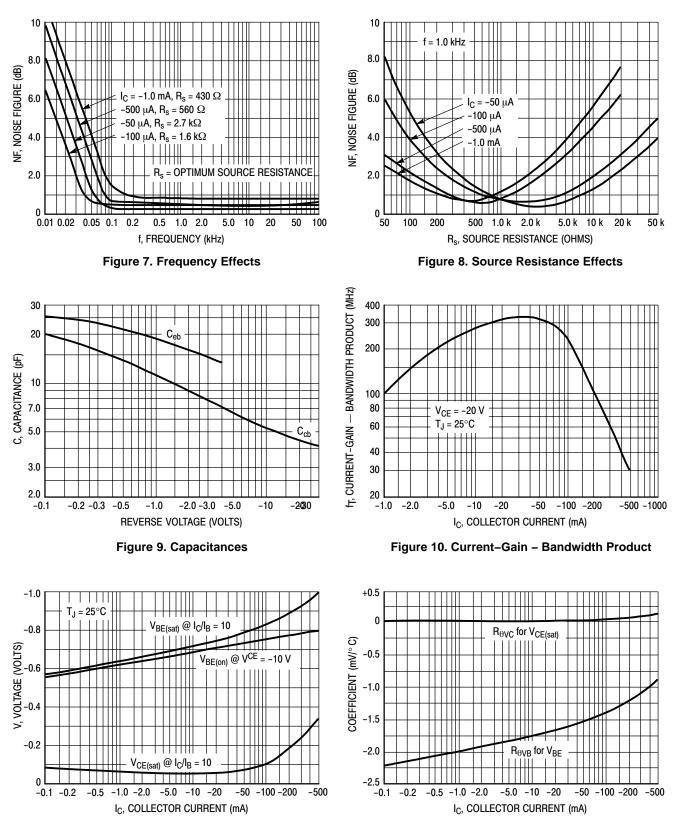
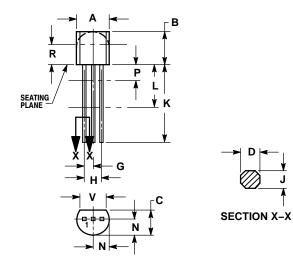



Figure 11. "On" Voltage

Figure 12. Temperature Coefficients

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.							
		INC	HES	MILLIN	MILLIMETERS		
	DIM	MIN	MAX	MIN	MAX		
	Α	0.175	0.205	4.45	5.20		
	В	0.170	0.210	4.32	5.33		
	C	0.125	0.165	3.18	4.19		
	D	0.016	0.021	0.407	0.533		
	G	0.045	0.055	1.15	1.39		
	Н	0.095	0.105	2.42	2.66		
	J	0.015	0.020	0.39	0.50		
	K	0.500		12.70			
	L	0.250		6.35			

0.100

2.04

2.93

3.43

2.66

2.54

DIMENSIONING AND TOLERANCING PER ANSI

CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R

0.115 ۷ 0.135 STYLE 17:

Р

R

NOTES:

Y14.5M. 1982.

1.

2 3.

4

PIN 1. COLLECTOR 2. BASE

N 0.080 0.105

3. EMITTER

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specification by customer's technical experts. SCILLC does not convey any license under its patent rights or other signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications of the right or surgical implant into the body, or other applications and under the follure of the SCILL C products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications are used in the follure of the SCILL C products are not designed. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative