

ON Semiconductor®

NC7SZ00 TinyLogic[®] UHS Two-Input NAND Gate

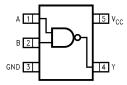
Features

- Ultra-High Speed: tpb 2.4ns (Typical) into 50pF at 5V Vcc
- High Output Drive: ±24mA at 3V Vcc
- Broad Vcc Operating Range: 1.65V to 5.5V
- Matches Performance of LCX Operated at 3.3V Vcc
- Power Down High-Impedance Inputs/Outputs
- Over-Voltage Tolerance inputs facilitate 5V to 3V Translation
- Proprietary Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak™ Packages
- Space-Saving SOT23 and SC70 Packages

Description

The NC7SZ00 is a single two-input NAND gate from ON Semiconductor's Ultra-High Speed (UHS) series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad $V_{\rm CC}$ operating range. The device is specified to operate over the 1.65V to 5.5V $V_{\rm CC}$ operating range. The inputs and output are high impedance when $V_{\rm CC}$ is 0V. Inputs tolerate voltages up to 6V, independent of $V_{\rm CC}$ operating voltage.

Ordering Information


Part Number	Top Mark	Package	Packing Method
NC7SZ00M5X	7Z00	5-Lead SOT23, JEDEC MO-178 1.6mm	3000 Units on Tape & Reel
NC7SZ00P5X	Z00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel
NC7SZ00L6X	YY	6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel
NC7SZ00FHX	YY	6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Connection Diagrams

Figure 1. Logic Symbol

Pin Configurations

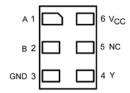


Figure 3. MicroPak™ (Top Through View)

Pin Definitions

Pin # SC70 / SOT23	Pin # MicroPak™	Name	Description
1	1	A	Input
2	2	В	Input
3	3	GND	Ground
4	4	Y	Output
5	6	Vcc	Supply Voltage
	5	NC	No Connect

Function Table

Inputs		Output
A	В	Υ
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

H = HIGH Logic Level

L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	Parameter			Unit
Vcc	Supply Voltage		-0.5	6.0	V
Vin	DC Input Voltage		-0.5	6.0	V
Vout	DC Output Voltage		-0.5	6.0	V
	DC Input Diada Current	V _{IN} < -0.5V		-50	A
IIK	I _{IK} DC Input Diode Current	V _{IN} > 6.0V		+20	mA
1	DC Output Diodo Current	V _{OUT} < -0.5V		-50	^
Іок	OK DC Output Diode Current Vout > 6V, Vcc=GNI	Vout > 6V, Vcc=GND		+20	mA
l _{out}	DC Output Current			±50	mA
Icc or Ignd	DC Vcc or Ground Current			±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C

TJ	Junction Temperature Under Bias		+150	°C
T∟	Junction Lead Temperature (Soldering,	10 Seconds)	+260	°C
	P _D Power Dissipation at +85°C	SOT-23	200	
D-		SC70-5	150	mW
FD		MicroPak™-6	130	
		MicroPak2™-6	120	
ESD	Human Body Model, JEDEC:JESD22-A114		4000	V
ESD	Charge Device Model, JEDEC:JESD22-	C101	2000	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit	
Vcc	Supply Voltage Operating		1.65	5.50	V	
VCC	Supply Voltage Data Retention		1.5	5.5	V	
Vin	Input Voltage		0	5.5	V	
Vouт	Output Voltage		0	Vcc	V	
TA	Operating Temperature		-40	+85	°C	
		Vcc at 1.8V, 2.5V ±0.2V	0	20		
$t_r,\ t_f$	Input Rise and Fall Times	Vcc at 3.3V ± 0.3V	0	10	ns/V	
		V _{CC} at 5.0V ± 0.5V	0	5		
		SOT-23		300		
0		SC70-5		435	°C/W	
θ JA	Thermal Resistance	MicroPak™-6		500		
		MicroPak2™-6		560		

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc	Conditions	T _A =25°C		C		40 to 5°C	Units
•				Min.	Тур.	Max.	Min.	Max.	
VIH	LIICI I aval Innut Valtage	1.65 to 1.95		0.75V _{CC}			0.75V _{CC}		V
VIH	HIGH Level Input Voltage	2.30 to 5.50		0.70V _{CC}			0.70V _{CC}		V
VIL	LOW Level Input Voltage	1.65 to 1.95				0.25V _{CC}		0.25V _{CC}	V
۷IL	LOW Level input voltage	2.30 to 5.50				0.30V _{CC}		0.30V _{CC}	V
		1.65		1.55	1.65		1.55		
		1.80		1.70	1.80		1.70		
		2.30	V _{IN} =V _{IL} I _{OH} =-100µA	2.20	2.30		2.20		
		3.00	1011	2.90	3.00		2.90		
V_{OH}	HIGH Level Output	4.50		4.40	4.50		4.40		V
VOH	Voltage	1.65	I _{OH} =-4mA	1.29	1.52		1.29		V
		2.30	I _{OH} =-8mA	1.90	2.15		1.90		
		3.00	I _{OH} =-16mA	2.40	2.80		2.40		
		3.00	I _{OH} =-24mA	2.30	2.68		2.30		
		4.50	I _{OH} =-32mA	3.80	4.20		3.80		
		1.65			0.00	0.10		0.08	
		2.30			0.00	0.10		0.10	
		3.00	V _{IN} =V _{IH} I _{OL} =100µA		0.00	0.10		0.10	
		3.00	10L 100 p		0.00	0.10		0.10	
V_{OL}	LOW Level Output	4.50			0.00	0.10		0.10	V
VOL	Voltage	1.65	I _{OL} =4mA		0.80	0.24		0.24	V
		2.30	I _{OL} =8mA		0.10	0.30		0.30	
		3.00	I _{OL} =16mA		0.15	0.40		0.40	
		3.00	I _{OL} =24mA		0.22	0.55		0.55	
		4.50	I _{OL} =32mA		0.22	0.55		0.55	
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} =5.5V, GND			±1		±10	μΑ
I _{OFF}	Power Off	0	V _{IN} or V _{OUT} =5.5V			1		10	μΑ
I _{CC}	Quiescent Supply Current	1.65 to 5.50	V _{IN} =5.5V, GND			2		20	μΑ

AC Electrical Characteristics

Symbol	I Parameter Vo		Conditions	T _A =25°C		25°C T _A =-40 to +85°C	T _A =-40 to +85°C		Units	Figure	
Symbol	Parameter	Vcc	Conditions	Min.	Тур.	Max.	Min.	Max.	Ullits	rigure	
		1.65		2.0	5.4	11.4	2.0	12.0			
		1.80	$C_L=15pF$, $R_L=1M\Omega$	2.0	4.5	9.5	2.0	10.0			
		2.50 ± 0.20			0.8	3.0	6.5	0.8	7.0		
t _{PHL} , t _{PLH}	Propagation Delay	3.30 ± 0.30		0.5	2.4	4.5	0.5	4.7	ns	Figure 4 Figure 5	
		5.00 ± 0.50		0.5	2.0	3.9	0.5	4.1		940	
		3.30 ± 0.30		C _L =50pF, 1.5 2.9 5.0 1.5 5.2	5.2						
		5.00 ± 0.50	$R_L=500\Omega$	0.8	2.4	4.3	0.8	4.5	1		
C _{IN}	Input Capacitance	0.00			4				pF		
C_{PD}	Power Dissipation	3.30			24		_		, E	Eiguro 6	
OPD	Capacitance ⁽²⁾	5.00			30				pF	Figure 6	

Note:

2. CPD is defined as the value of the internal equivalent capacitance derived from dynamic operating current consumption (IccD) at no output lading and operating at 50% duty cycle. CPD is related to IccD dynamic operating current by the expression: IccD=(CPD)(Vcc)(fin)+(IccStatic).

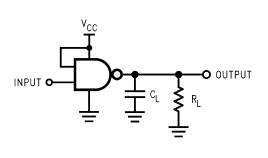


Figure 4. AC Test Circuit

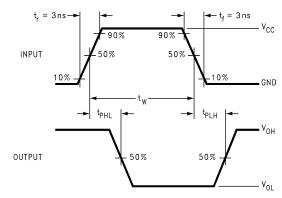
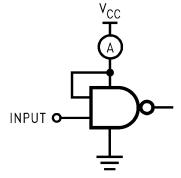



Figure 5. AC Waveforms

Note:

3. Input=AC Waveform; t_r=t_f=1.8ns; PRR=10MHz; Duty Cycle =50%.

Figure 6. I_{CCD} Test Circuit

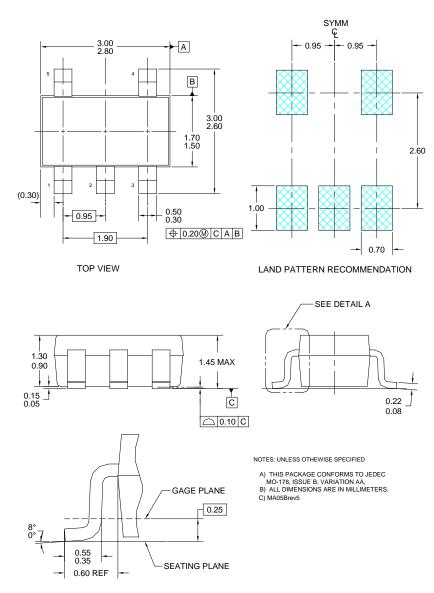
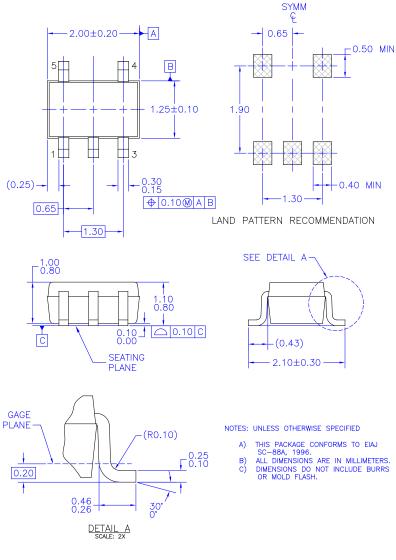
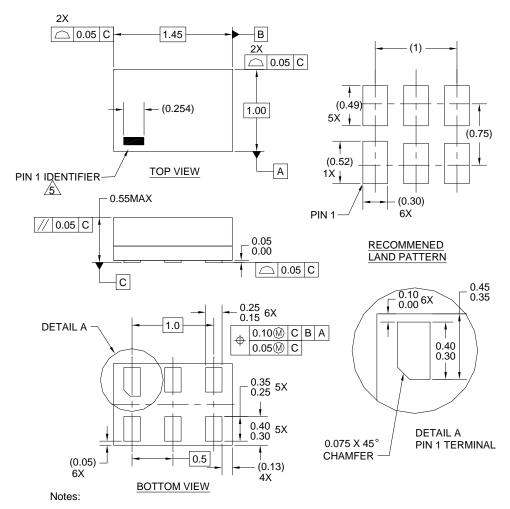



Figure 7. 5-Lead SOT23, JEDEC MO-178 1.6mm

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
M5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed



MAA05AREV5

Figure 8. 5-Lead, SC70, EIAJ SC-88a, 1.25mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994
- 4. FILENAME AND REVISION: MAC06AREV4
 5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

OTHER LINE IN THE MARK CODE LAYOUT.

Figure 9. 6-Lead, MicroPak™, 1.0mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

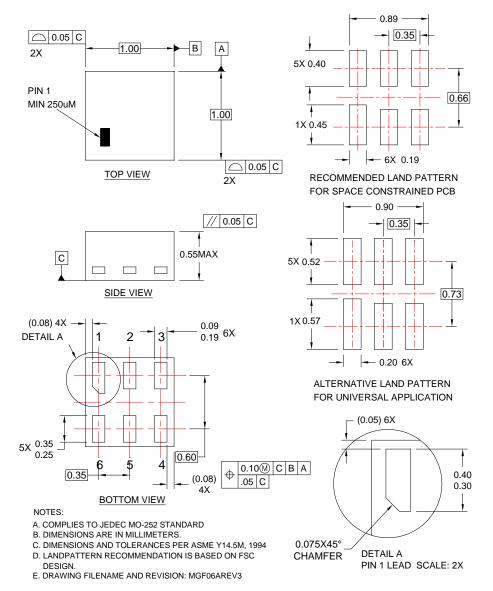


Figure 10. 6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Fmail: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free LISA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative