National Semiconductor

100336 Low Power 4-Stage Counter/Shift Register

General Description

The 100336 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select (S_n) inputs determine the mode of operation, as shown in the Function Select table. Two Count Enable (CEP, CET) inputs are provided for ease of cascading in multistage counters. One Count Enable (CET) input also doubles as a Serial Data (D₀) input for shift-up operation. For shift-down operation, D₃ is the Serial Data input. In counting operations the Terminal Count (TC) output goes LOW when the counter reaches 15 in the count/up mode or 0 (zero) in the count/down mode. In the shift modes, the TC output repeats the Q₃ output. The dual nature of this TC/Q₃ output and the D₀/CET input means that one interconnection from one stage to the next higher stage serves as the link for multistage counting or shift-up operation. The individual Preset (P_n) inputs are used

to enter data in parallel or to preset the counter in programmable counter applications. A HIGH signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the flip-flops. In addition, a synchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have 50 k Ω pull-down resistors.

Features

- 40% power reduction of the 100136
- 2000V ESD protection
- Pin/function compatible with 100136
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9230601

Logic Symbol

Pin	Description								
Names									
СР	Clock Pulse Input								
CEP	Count Enable Parallel Input (Active LOW)								
D ₀ /CET	Serial Data Input/Count Enable								
	Trickle Input (Active LOW)								
$S_0 - S_2$	Select Inputs								
MR	Master Reset Input								
P ₀ -P ₃	Preset Inputs								
D ₃	Serial Data Input								
TC	Terminal Count Output								
$Q_0 - Q_3$	Data Outputs								
$\overline{O}_{-}\overline{O}_{-}$	Complementary Data Outputs								

00336 Low Power 4-Stage Counter/Shift Register

Function Select Table										
S ₂	S ₁	So	Function							
L	L	L	Parallel Load							
L	L	Н	Complement							
L	Н	L	Shift Left							
L	Н	н	Shift Right							
н	L	L	Count Down							
н	L	Н	Clear							
н	Н	L	Count Up							
н	Н	н	Hold							

Truth Table

Q	=	LSB	
Ge0	_	LOD	

Inputs								Outputs					
MR	S ₂	S ₁	So	CEP	D ₀ /CET	D ₃	СР	Q_3	Q ₂	Q ₁	Q ₀	TC	Mode
L	L	L	L	Х	Х	Х	~	P ₃	P ₂	P ₁	Po	L	Preset (Parallel Load)
L	L	L	н	Х	Х	Х	~	\overline{Q}_3	\overline{Q}_2	\overline{Q}_1	\overline{Q}_{0}	L	Invert
L	L	Н	L	Х	Х	Х	~	D ₃	Q ₃	Q_2	Q ₁	D ₃	Shift to LSB
L	L	н	н	Х	Х	Х	~	Q ₂	Q ₁	Q_0	Do	Q ₃ (Note 1)	Shift to MSB
L	Н	L	L	L	L	Х	~	((Q _{0–3}) ı	minus	1	1	Count Down
L	Н	L	L	н	L	Х	Х	Q ₃	Q ₂	Q_1	Q_0	1	Count Down with \overline{CEP} not active
L	Н	L	L	Х	Н	Х	Х	Q_3	Q ₂	Q_1	Q_0	Н	Count Down with \overline{CET} not active
L	Н	L	Н	Х	Х	Х	~	L	L	L	L	Н	Clear
L	Н	Н	L	L	L	Х	~		(Q ₀₋₃)	plus 1		2	Count Up
L	Н	н	L	н	L	Х	Х	Q ₃	Q ₂	Q_1	Q_0	2	Count Up with CEP not active
L	Н	Н	L	Х	Н	Х	Х	Q_3	Q ₂	Q_1	Q_0	Н	Count Up with CET not active
L	Н	H	Н	Х	Х	Х	Х	Q_3	Q ₂	Q_1	Q_0	Н	Hold
Н	L	L	L	Х	Х	Х	Х	L	L	L	L	L	
Н	L	L	н	Х	Х	X	Х	L	L	L	L	L	
Н	L	н	L	Х	Х	X	Х	L	L	L	L	L	
Н	L	н	н	Х	Х	X	Х	L	L	L	L	L	Asynchronous
н	Н	L	L	Х	L	Х	Х	L	L	L	L	L	Master Reset
н	Н	L	L	Х	н	Х	Х	L	L	L	L	н	
н	Н	L	н	Х	Х	Х	Х	L	L	L	L	Н	
н	Н	н	L	Х	Х	Х	Х	L	L	L	L	Н	
Н	Н	Н	н	Х	Х	Х	Х	L	L	L	L	Н	
1 = H if 2 = H if H = L = X =	H H H X X X L L L H 1 = Lif $Q_0-Q_3 = LLLL$ H if $Q_0-Q_3 \neq LLLL$ H <												

Note 1: Before the clock, $\overline{\text{TC}}$ is Q_3

After the clock, $\overline{\text{TC}}$ is Q_2

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–50 mA
ESD (Note 3)	≥2000V

Military Version DC Electrical Characteristics

 $V_{FF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55^{\circ}C$ to $+125^{\circ}C$

Symbol	Parameter	Min	Max	Units	Tc	Cond	litions	Notes
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to			
					+125°C	$V_{IN} = V_{IH (Max)}$	Loading with	
		-1085	-870	mV	–55°C	or V _{IL (Min)}	50Ω to -2.0V	(Notes 4, 5, 6)
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to]		
					+125°C			
		-1830	-1555	mV	–55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to			
					+125°C	$V_{IN} = V_{IH (Min)}$	Loading with	
		-1085		mV	–55°C	or V _{IL (Max)}	50Ω to -2.0V	(Notes 4, 5, 6)
VOLC	Output LOW Voltage		-1610	mV	0°C to			
					+125°C			
			-1555	mV	–55°C			
VIH	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIC	GH Signal	(Notes 4, 5, 6, 7)
					+125°C	for All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LO	W Signal	(Notes 4, 5, 6, 7)
					+125°C	for All Inputs		
I _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$		(Notes 4, 5, 6)
					+125°C	V _{IN} = V _{IL (Min)}		
I _{IH}	Input HIGH Current		240	μΑ	0°C to	$V_{EE} = -5.7V$		
					+125°C	$V_{IN} = V_{IH(Max)}$		(Notes 4, 5, 6)
			340	μA	–55°C			
I_{EE}	Power Supply Current				–55°C	Inputs Open		
		-185	-70	mA	to	$V_{EE} = -4.2V$ to	-4.8V	(Notes 4, 5, 6)
		-195	-70		+125°C	$V_{EE} = -4.2V$ to	–5.7V	

Note 4: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stablize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 5: Screen tested 100% on each device at -55 °C, +25 °C, and +125 °C, Subgroups 1, 2, 3, 7, and 8.

Note 6: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 7: Guaranteed by applying specified input conditon and testing $V_{\text{OH}}/V_{\text{OL}}.$

Recommended Operating Conditions

Case Temperature (T_C) Military

-55°C to +125°C -5.7V to -4.2V

Supply Voltage (V_{EE}) Note 2: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

· EE	Baramatar	-	EE°C	T -	. 25°0	T -	. 40E°	1 lmita	Conditions	Netes
Буппрог	Parameter	Nin	-55 C Max	I _C =	Hax	I _C =	Max	Units	Conditions	Notes
f _{ebift}	Shift Frequency	325		325		325		MHz	Figures 2, 3	(Note 11)
t _{PLH} t _{PHL}	Propagation Delay CP to Q_n, \overline{Q}_n	0.40	2.30	0.50	2.20	0.40	2.50	ns	Figures 1, 3	(Notes 8, 9, 10, 12)
t _{PLH} t _{PHL}	Propagation Delay CP to \overline{TC} (Shift)	1.30	3.90	1.70	3.80	1.70	4.20	ns	Figures 1, 7, 8	
t _{PLH} t _{PHL}	Propagation Delay CP to \overline{TC} (Count)	1.20	4.60	1.50	4.60	1.60	5.20	ns	Figures 1, 9	(Notes 8, 9, 10, 12)
t _{PLH} t _{PHL}	Propagation Delay MR to Q_n , \overline{Q}_n	0.60	2.90	0.80	2.80	0.90	3.20	ns	Figures 1, 4	(Notes 8, 9, 10, 12)
t _{PLH} t _{PHL}	Propagation Delay MR to \overline{TC} (Count)	2.30	5.20	2.70	5.20	2.90	5.90	ns	Figures 1, 12	
t _{PHL}	Propagation Delay MR to \overline{TC} (Shift)	2.10	4.30	2.20	4.10	2.40	4.70	ns	Figures 1, 10, 11	(Notes 8, 9, 10, 12)
t _{PLH} t _{PHL}	Propagation Delay D_0/\overline{CET} to \overline{TC}	0.70	3.20	1.00	3.20	1.30	4.10	ns	Figures 1, 5	(Notes 8, 9, 10, 12)
t _{PLH} t _{PHL}	Propagation Delay S_n to \overline{TC}	1.30	4.10	1.50	4.20	1.70	4.90	ns		
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.20	1.90	0.20	1.80	0.20	2.00	ns	Figures 1, 3	(Note 11)
t _s	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.40 1.70 1.80 1.80 3.30 2.60		1.40 1.70 1.80 1.80 3.30 2.60		1.40 1.70 1.80 1.80 3.30 2.60		ns	Figure 6	(Note 11)
t _h	Hold Time D_3 P_n $D_0 \sqrt{CET}$ \overline{CEP} S_n	0.90 1.00 0.70 0.60 0.00		0.90 1.00 0.70 0.60 0.00		0.90 1.00 0.70 0.60 0.00		ns	Figure 6	(Note 11)
t _{pw} (H)	Pulse Width HIGH: CP	1.60		1.60		1.60		ns	Figures 3, 4	(Note 11)

Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold tempertures.

Note 9: Screen tested 100% on each device at +25 $^\circ\text{C}$ temperature only, Subgroups A9.

Note 10: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroups A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 11: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 12: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Test Circuitry

Notes:

 V_{CC} , $V_{CCA} = +2V$, $V_{EE} = -2.5V$ L1, L2 and L3 = equal length 50 Ω impedance lines $R_T = 50\Omega$ terminator internal to scope $\label{eq:resolution} \begin{array}{l} R_{T} = 502 \mbox{ terminator internal to scope} \\ \mbox{Decoupling 0.1 } \mu F \mbox{ from GND to } V_{CC} \mbox{ and } V_{EE} \\ \mbox{All unused outputs are loaded with } 50\Omega \mbox{ to GND} \\ \mbox{C}_{L} = Fixture \mbox{ and stray capacitance } \leq 3 \mbox{ pF} \\ \mbox{Pin numbers shown are for flatpak;} \\ \mbox{ for DIP see logic symbol} \end{array}$

FIGURE 1. AC Test Circuit

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ø	National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
www.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.