- Function, Pinout, and Drive Compatible
With FCT and F Logic
- Reduced V_{OH} (Typically $=3.3 \mathrm{~V}$) Versions of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- $\mathrm{I}_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)
- Independent Register for A and B Buses
- CY54FCT646T
- 48-mA Output Sink Current
- 12-mA Output Source Current
- CY74FCT646T
- 64-mA Output Sink Current
- 32-mA Output Source Current
- 3-State Outputs

description

The 'FCT646T devices consist of a bus transceiver circuit with 3-state, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers as the appropriate

CY54FCT646T...LPACKAGE
(TOP VIEW)

NC - No internal connection clock pin goes to a high logic level. Output-enable ($\overline{\mathrm{G}}$) and direction (DIR) inputs control the transceiver function. In the transceiver mode,data present at the high-impedance port can be stored in either the A or B register, or in both. Select controls (SAB, SBA) can multiplex stored and real-time (transparent mode) data. DIR determines which bus receives data when \bar{G} is low. In the isolation mode ($\overline{\mathrm{G}}$ is high), A data can be stored in the B register and/or B data can be stored in the A register.

These devices are fully specified for partial-power-down applications using $\mathrm{I}_{\text {off. }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

PIN DESCRIPTION

NAME	DESCRIPTION
A	Data register A inputs, data register B outputs
B	Data register B inputs, data register A outputs
CPAB, CPBA	Clock-pulse inputs
SAB, SBA	Output data-source-select inputs
DIR, $\overline{\mathrm{G}}$	Output-enable inputs

ORDERING INFORMATION

TA	PACKAGE \dagger		SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QSOP - Q	Tape and reel	5.4	CY74FCT646CTQCT	FCT646C
	SOIC - SO	Tube	5.4	CY74FCT646CTSOC	FCT646C
		Tape and reel	5.4	CY74FCT646CTSOCT	
	QSOP - Q	Tape and reel	6.3	CY74FCT646ATQCT	FCT646A
	SOIC - SO	Tube	6.3	CY74FCT646ATSOC	FCT646A
		Tape and reel	6.3	CY74FCT646ATSOCT	
	QSOP - Q	Tape and reel	9	CY74FCT646TQCT	FCT646
	SOIC - SO	Tube	9	CY74FCT646TSOC	FCT646
		Tape and reel	9	CY74FCT646TSOCT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	LCC - L	Tube	6	CY54FCT646CTLMB	
	CDIP - D	Tube	7.7	CY54FCT646ATDMB	
	LCC - L	Tube	7.7	CY54FCT646ATLMB	
		Tube	11	CY54FCT646TLMB	

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INPUTS						DATA I/O\#		OPERATION OR FUNCTION
$\overline{\mathrm{G}}$	DIR	CPAB	CPBA	SAB	SBA	$\mathrm{A}_{1}-\mathrm{A}_{8}$	B_{1} - B_{8}	
H	X	H or L	H or L	X	X	Input	Input	Isolation
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	H or L	X	H	X	Input	Output	Stored A data to B bus

$\mathrm{H}=$ High logic level, $\mathrm{L}=$ Low logic level, $\uparrow=$ Low-to-high transition, $\mathrm{X}=$ Don't care
\ddagger The data output functions can be enabled or disabled by various signals at the \bar{G} or DIR inputs. Data input functions always are enabled, i.e., data at the bus pins is stored on every low-to-high transition of the clock inputs.

\dagger Cannot transfer data to A bus and B bus simultaneously.

Figure 1. Bus-Management Functions

logic diagram (positive logic)

Pin numbers shown are for the Q and SO packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range to ground potential	-0.5 V to 7 V
DC input voltage range	-0.5 V to 7 V
DC output voltage range	-0.5 V to 7 V
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, $\theta_{J A}$ (see Note 1): Q package	$61^{\circ} \mathrm{C} / \mathrm{W}$
SO package	$46^{\circ} \mathrm{C} / \mathrm{W}$
Ambient temperature range with power applied, T_{A}	$-65^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

[^0] functional operation of the device at these or any otherconditions beyond those indicatedunder "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

		CY54FCT646T			CY74FCT646T			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
${ }^{\text {OH }}$	High-level output current			-12			-32	mA
lOL	Low-level output current			48			64	mA
T_{A}	Operating free-air temperature	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.
§ Per TTL-driven input (VIN $=3.4 \mathrm{~V}$); all other inputs at V_{CC} or GND
IT This parameter is derived for use in total power-supply calculations.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

\# IC $=I_{C C}+\Delta I_{C C} \times D_{H} \times N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} \times N_{1}\right)$
Where:
IC = Total supply current
ICC = Power-supply current with CMOS input levels
${ }^{\Delta} \mathrm{I} \mathrm{CC}=$ Power-supply current for a TTL high input $(\mathrm{V} I \mathrm{~N}=3.4 \mathrm{~V})$
$\mathrm{D}_{\mathrm{H}}=$ Duty cycle for TTL inputs high
$N_{T}=$ Number of TTL inputs at D_{H}
ICCD = Dynamic current caused by an input transition pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock frequency for registered devices, otherwise zero
$\mathrm{f}_{1}=$ Input signal frequency
$N_{1}=$ Number of inputs changing at f_{1}
All currents are in milliamperes and all frequencies are in megahertz.
$\|$ Values for these conditions are examples of the ICC formula.

8-BIT REGISTERED TRANSCEIVERS

WITH 3-STATE OUTPUTS

SCCS031A - JULY 1994 - REVISED OCTOBER 2001
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

		CY54FCT646T		CY54FCT646AT		CY54FCT646CT		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\text {w }}$	Pulse duration	6		5		5		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CPAB \uparrow or CPBA \uparrow	4.5		2		2		ns
th	Hold time, data after CPAB \uparrow or CPBA \uparrow	2		1.5		1.5		ns

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

switching characteristics over operating free-air temperature range (see Figure 2)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	CY54FCT646T		CY54FCT646AT		CY54FCT646CT		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	2	11	2	7.7	1.5	6	ns
tPHL			2	11	2	7.7	1.5	6	
tPZH	DIR	A or B	2	15	2	10.5	1.5	8.9	ns
tpZL			2	15	2	10.5	1.5	8.9	
tPHZ	$\overline{\mathrm{G}}$ and DIR	A or B	2	11	2	7.7	1.5	7.7	ns
tplZ			2	11	2	7.7	1.5	7.7	
tPLH	CPAB or CPBA	A or B	2	10	2	7	1.5	6.3	ns
tPHL			2	10	2	7	1.5	6.3	
tPLH	SBA or SAB	A or B	2	12	2	8.4	1.5	7	ns
tPHL			2	12	2	8.4	1.5	7	

switching characteristics over operating free-air temperature range (see Figure 2)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	CY74FCT646T		CY74FCT646AT		CY74FCT646CT		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1.5	9	1.5	6.3	1.5	5.4	ns
tpHL			1.5	9	1.5	6.3	1.5	5.4	
tPZH	DIR	A or B	1.5	14	1.5	9.8	1.5	7.8	ns
tpZL			1.5	14	1.5	9.8	1.5	7.8	
tPHZ	$\overline{\mathrm{G}}$ and DIR	A or B	1.5	9	1.5	6.3	1.5	6.3	ns
tpLZ			1.5	9	1.5	6.3	1.5	6.3	
tPLH	CPAB or CPBA	A or B	1.5	9	1.5	6.3	1.5	5.7	ns
tpHL			1.5	9	1.5	6.3	1.5	5.7	
tPLH	SBA or SAB	A or B	1.5	11	1.5	7.7	1.5	6.2	ns
tPHL			1.5	11	1.5	7.7	1.5	6.2	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-9222301M3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962- \\ & 9222301 \mathrm{M} 3 \mathrm{~A} \end{aligned}$	Samples
5962-9222303M3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 9222303M3A } \\ & \text { CY54FCT } \\ & \text { 646ATLMB } \\ & \hline \end{aligned}$	Samples
5962-9222303MLA	ACTIVE	CDIP	JT	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9222303ML A CY54FCT646ATDM B	Samples
5962-9222305M3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & 9222305 M 3 A \\ & \text { CY54FCT } \\ & \text { 646CTLMB } \end{aligned}$	Samples
CY54FCT646ATDMB	ACTIVE	CDIP	JT	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9222303ML A CY54FCT646ATDM B	Samples
CY54FCT646ATLMB	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 9222303M3A } \\ & \text { CY54FCT } \\ & \text { 646ATLMB } \end{aligned}$	Samples
CY54FCT646CTLMB	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 9222305M3A } \\ & \text { CY54FCT } \\ & \text { 646CTLMB } \end{aligned}$	Samples
CY74FCT646ATQCT	ACTIVE	SSOP	DBQ	24	2500	Green (RoHS \& no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FCT646A	Samples
CY74FCT646ATSOC	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT646A	Samples
CY74FCT646ATSOCT	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT646A	Samples
CY74FCT646ATSOCTE4	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT646A	Samples
CY74FCT646CTSOC	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT646C	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
CY74FCT646TSOC	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT646	Samples
CY74FCT646TSOCT	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	FCT646	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
CY74FCT646ATQCT	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CY74FCT646ATSOCT	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
CY74FCT646TSOCT	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CY74FCT646ATQCT	SSOP	DBQ	24	2500	367.0	367.0	38.0
CY74FCT646ATSOCT	SOIC	DW	24	2000	350.0	350.0	43.0
CY74FCT646TSOCT	SOIC	DW	24	2000	350.0	350.0	43.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and

