

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. FAIRCHILD

SEMICONDUCTOR

September 2000 Revised June 2005

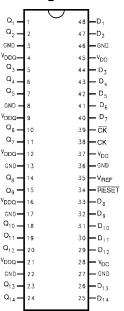
SSTV16857 • SSTVN16857 14-Bit Register with SSTL-2 Compatible I/O and Reset

General Description

The SSTV16857 is a 14-bit register designed for use with 184 and 232 pin PC1600, 2100, and 2700 DDR DIMM applications. The SSTVN16857 is a 14-bit register designed for use with 184 and 232 pin PC3200 DDR DIMM applications. These devices have a differential input clock, SSTL-2 compatible data inputs and a LVCMOS compatible RESET input. These devices have been designed for compliance with the JEDEC DDR module and register specifications.

The devices are fabricated on an advanced submicron CMOS process and are designed to operate at power supplies of less than 3.6V's.

Features


- Compliant with DDR-I registered module specifications
- Operates at 2.5V ± 0.2V V_{DD}
- SSTL-2 compatible input and output structure
- Differential SSTL-2 compatible clock inputs
- Low power mode when device is reset
- Industry standard 48 pin TSSOP package

Ordering Code:

Order Number	Package Number	Package Description
SSTV16857MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
SSTVN16857MTD (Preliminary)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Name	Description	
Q ₁ -Q ₁₄	SSTL-2 Compatible Output	
D ₁ -D ₁₄	SSTL-2 Compatible Inputs	
RESET	Asynchronous LVCMOS Reset Input	
СК	Positive Master Clock Input	
СК	Negative Master Clock Input	
V _{REF}	Voltage Reference Pin for SSTL Level Inputs	
V _{DDQ}	Power Supply Voltage for Output Signals	
V _{DD}	Power Supply Voltage for Inputs	

Truth Table

RESET	D _n	СК	СК	Qn
L	X or Floating	X or Floating	X or Floating	L
Н	L	↑	\downarrow	L
н н		↑	¥	Н
Н	Х	L	Н	Q _n
Н	Х	Н	L	Q _n
= Logic LOW				

H = Logic HIGH

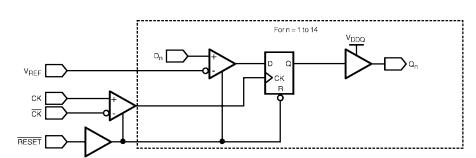
X = Don't Care, but not floating unless noted $<math>\uparrow = LOW-to-HIGH Clock Transition$

 \downarrow = HIGH-to-LOW Clock Transition

© 2005 Fairchild Semiconductor Corporation DS500387

Functional Description

The SSTV16857 and SSTVN16587 are 14-bit registers with SSTL-2 compatible inputs and outputs. Input data is captured by the register on the positive edge crossing of the differential clock pair.


When the LV-CMOS RESET signal is asserted LOW, all outputs and internal registers are asynchronously placed into the LOW logic state. In addition, the clock and data differential comparators are disabled for power savings. Output glitches are prevented by disabling the internal registers more quickly than the input comparators. When

Logic Diagram

RESET is removed, the system designer must insure the clock and data inputs to the device are stable during the rising transition of the RESET signal.

The SSTL-2 data inputs transition based on the value of $V_{REF},\,V_{REF}$ is a stable system reference used for setting the trip point of the input buffers of the SSTV16857/ SSTVN16857 and other SSTL-2 compatible devices.

The $\overline{\text{RESET}}$ signal is a standard CMOS compatible input and is not referenced to the V_{REF} signal.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{DDQ})	-0.5V to +3.6V
Supply Voltage (V _{DD})	-0.5V to +3.6V
Reference Voltage (V _{REF})	-0.5V to +3.6V
Input Voltage (V _I)	–0.5V to V _{DD} + 0.5V
Output Voltage (V _O)	
Outputs Active (Note 2)	-0.5V to V _{DDQ} + 0.5V
DC Input Diode Current (I _{IK})	
$V_{I} < 0V$	–50 mA
$V_{I} > V_{DD}$	+50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
$V_{O} > V_{DD}$	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{DD} or Ground Current	
per Supply Pin (I _{DD} or Ground)	±100 mA
Storage Temperature Range (T _{stg})	-65°C to +150°C

Recommended Operating Conditions (Note 3)	g
Power Supply (V _{DDQ})	
SSTV16857	2.3V to 2.7V
SSTVN16857	2.5V to 2.7V
Power Supply (V _{DD})	
Operating Range	V _{DDQ} to 2.7V
Reference Supply ($V_{REF} = V_{DDQ}/2$)	
SSTV16857	1.15 to 1.35
SSTVN16857	1.25 to 1.35
Termination Voltage (V _{TT})	$V_{REF} \pm 40 \text{ mV}$
Input Voltage	0V to V _{DD}
Output Voltage (V _O)	
Output in Active States	0V to V _{DDQ}
Output Current I _{OH} /I _{OL}	
V _{DD} = 2.3V to 2.7V SSTV16857	±20 mA
V _{DD} = 2.5V to 2.7V SSTVN1685	7 ±20 mA
Free Air Operating Temperature (T_A)	0°C to +70°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

Note 3: The $\overline{\text{RESET}}$ input of the device must be held at V_{DD} or GND to ensure proper device operation. The differential inputs must not be floating, unless $\overline{\text{RESET}}$ is asserted LOW.

DC Electrical Characteristics (SSTV16857) (2.3V \leq V_{DD} \leq 2.7V)

Symbol	Parameter	Conditions	V _{DD} (V)	Min	Max	Units
V _{IKL}	Input LOW Clamp Voltage	I _I = -18 mA	2.3		-1.2	V
V _{IKH}	Input HIGH Clamp Voltage	I _I = +18 mA	2.3		3.5	V
V _{IH-AC}	AC HIGH Level Input Voltage	Data Inputs		V _{REF} +310mV		V
V _{IL-AC}	AC LOW Level Input Voltage	Data Inputs			V _{REF} -310mV	V
V _{IH-DC}	DC HIGH Level Input Voltage	Data Inputs		V _{REF} +150mV		V
V _{IL-DC}	DC LOW Level Input Voltage	Data Inputs			V _{REF} -150mV	V
V _{IH}	HIGH Level Input Voltage	RESET		1.7		V
V _{IL}	LOW Level Input Voltage	RESET			0.7	V
V _{ICR}	Common Mode Input Voltage Range	CLK, CLK		0.97	1.53	V
V _{I(PP)}	Peak to Peak Input Voltage	CLK, CLK		360		mV
V _{OH}	HIGH Level Output Voltage	I _{OH} = −100 μA I _{OH} = −16 mA	2.3 to 2.7 2.3	V _{DD} - 0.2 1.95		V
/ _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA I _{OL} = 16 mA	2.3 to 2.7 2.3		0.2 0.35	V
I _I	Input Leakage Current	$V_I = V_{DD}$ or GND	2.7		±5.0	μA
I _{DD}	Static Standby	RESET = GND, I _O = 0			10	μA
	Static Operating	$\overline{\text{RESET}} = V_{\text{DD}}, I_{\text{O}} = 0$ $V_{\text{I}} = V_{\text{IH}(\text{AC})} \text{ or } V_{\text{IL}(\text{AC})}$	2.7		25	mA

www.fairchildsemi.com

SSTV16857 • SSTVN16857

TVN16857
• SS
16857
SSTV

Symbol	Parameter	Conditions	V _{DD} (V)	Min	Max	Units
DDD	Dynamic Operating Current	$\overline{\text{RESET}} = V_{DD}, I_{O} = 0$				
	Clock Only	$V_{I} = V_{IH(AC)} \text{ or } V_{IL(AC)}$			90	μA/MHz
		CK, CK Duty Cycle 50%				
	Dynamic Operating Current	$RESET = V_{DD}, I_O = 0$	2.7			
	per Data Input	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$				
		CK, CK Duty Cycle 50%			15	μA/MHz
		Data Input = 1/2 Clock				
	Output HIGH On Resistance	Rate 50% Duty Cycle	2.3 to 2.7	7	20	Ω
OH OL	Output LOW On Resistance	$I_{OH} = -20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	2.3 to 2.7 2.3 to 2.7	7	20	Ω
0L 0A	R _{OH} - R _{OL}	$I_0 = 20 \text{ mA}, T_A = 25^{\circ}\text{C}$	2.5	,	4	Ω
DC EI	ectrical Characterist	ics (SSTVN1685	5 7) (2.5V ≤ V _{DI}	_D ≤ 2.7V)		
Symbol	Parameter	Conditions	V _{DD}	Min	Max	Units
•	Faraneter	Conditions	(V)	IVIII	WIGA	Units
'IKL	Input LOW Clamp Voltage	I _I = -18 mA	2.5		-1.2	V
ікн	Input HIGH Clamp Voltage	I _I = +18 mA	2.5		3.5	V
IH-AC	AC HIGH Level Input Voltage	Data Inputs		V _{REF} +310mV		V
IL-AC	AC LOW Level Input Voltage	Data Inputs		1. 450-11	V _{REF} -310mV	V
IH-DC	DC HIGH Level Input Voltage	Data Inputs		V _{REF} +150mV	\/ 150m\/	V V
IL-DC	DC LOW Level Input Voltage	Data Inputs		47	V _{REF} -150mV	
IH	HIGH Level Input Voltage	RESET		1.7		V
IL	LOW Level Input Voltage	RESET			0.7	V
ICR	Common Mode Input Voltage Range	CLK, CLK		0.97	1.53	V
I(PP)	Peak to Peak Input Voltage	CLK, CLK		360		mV
ОН	HIGH Level Output Voltage	I _{OH} = -100 μA	2.5 to 2.7	V _{DD} - 0.2		V
		I _{OH} = -16 mA	2.5	1.95		
OL	LOW Level Output Voltage	I _{OL} = 100 μA	2.5 to 2.7		0.2	V
	Input Leakage Current	$I_{OL} = 16 \text{ mA}$ $V_I = V_{DD} \text{ or GND}$	2.5		0.35 ±5.0	μA
		1	2.1			
D	Static Standby	RESET = GND, I _O = 0			10	μA
	Static Operating	$\overline{\text{RESET}} = V_{\text{DD}}, I_{\text{O}} = 0$	2.7		25	mA
		$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$				
DD	Dynamic Operating Current	$RESET = V_{DD}, I_{O} = 0$			00	
	Clock Only	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$ CK, CK Duty Cycle 50%			90	μA/MHz
	Durantia Orantia a Oranti					
	Dynamic Operating Current	$\overline{\text{RESET}} = V_{\text{DD}}, I_{\text{O}} = 0$	2.7			
	per Data Input	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$ CK, CK Duty Cycle 50%			15	μA/MHz
		Data Input = ½ Clock			15	μΑντιντι 12
		Rate 50% Duty Cycle				
он	Output HIGH On Resistance	$I_{OH} = -20 \text{ mA}$	2.5 to 2.7	7	20	Ω
OL	Output LOW On Resistance	$I_{OL} = 20 \text{ mA}$	2.5 to 2.7	7	20	Ω
ΟΔ	R _{OH} - R _{OL}	I _O = 20 mA, T _A = 25°C	2.5		4	Ω

www.fairchildsemi.com

		$T_A = 0^\circ C$ to $+70^\circ C$, C	$L = 30 \text{ pF, } R_L = 50 \Omega$	
Symbol	Parameter	V_{DD} = 2.5V \pm 0.2V; V_{DDQ} = 2.5V \pm 0.2V		Units
		Min	Max	
f _{MAX}	Maximum Clock Frequency	200		MHz
t _W	Pulse Duration, CK, CK HIGH or LOW (Figure 2)	2.5		ns
t _{ACT} (Note 5)	Differential Inputs Activation Time, data inputs must be LOW after RESET HIGH (Figure 3)	22		ns
t _{INACT} (Note 5)	Differential Inputs De-activation Time, data and clock inputs must be held at valid levels (not floating) after RESET LOW	22		ns
t _S	Setup Time, Fast Slew Rate (Note 6)(Note 7) (Figure 5)	0.65		ns
	Setup Time, Slow Slew Rate (Note 7)(Note 8) (Figure 5)	0.9		
t _H	Hold Time, Fast Slew Rate (Note 6)(Note 8) (Figure 5)	0.75		ns
	Hold Time, Slow Slew Rate (Note 7)(Note 8) (Figure 5)	0.9		115
t _{REM}	Reset Removal Time (Figure 7)	10		ns
t _{PHL} , t _{PLH}	Propagation Delay CLK, CLK to Q _n (Figure 4)	1.1	2.8	ns
t _{PHL}	Propagation Delay RESET to Qn (Figure 6)		5.0	ns
t _{SK(Pn-Pn)}	Output to Output Skew		200	ps

Note 5: This parameter is not production tested.

Note 6: For data signal input slew rate \geq 1 V/ns.

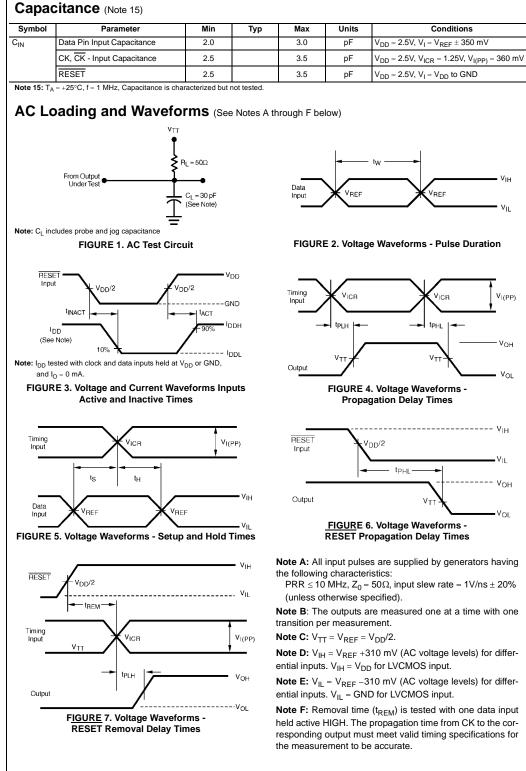
Note 7: For data signal input slew rate ≥ 0.5 V/ns and < 1 V/ns.

Note 8: For CK, \overline{CK} signals input slew rates are \ge 1 V/ns.

AC Electrical Characteristics (SSTVN16857) (Note 9)

Symbol	Parameter	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C, 0$	Units		
		$\textbf{V}_{\textbf{D}\textbf{D}}=\textbf{2.5V}\pm\textbf{0.2V}\textbf{;}$			
		Min	Max		
f _{MAX}	Maximum Clock Frequency	220		MHz	
t _W	Pulse Duration, CK, CK HIGH or LOW (Figure 2)	2.5		ns	
t _{ACT} (Note 5)	Differential Inputs Activation Time, data inputs must be LOW after RESET HIGH (Figure 3)	22		ns	
t _{INACT} (Note 5)	Differential Inputs De-activation Time, Data and Clock Inputs must be held at valid levels (not floating) after RESET LOW	22		ns	
t _S	Setup Time, Fast Slew Rate (Note 9)(Note 12) (Figure 5)	0.65		ns	
	Setup Time, Slow Slew Rate (Note 12)(Note 13) (Figure 5)	0.75			
t _H	Hold Time, Fast Slew Rate (Note 11)(Note 13) (Figure 5)	0.75		ns	
	Hold Time, Slow Slew Rate (Note 12)(Note 13) (Figure 5)	0.9		115	
t _{REM}	Reset Removal Time (Figure 7)	10		ns	
t _{PHL} , t _{PLH}	Propagation Delay CLK, CLK to Qn (Figure 4)	1.1	2.4	ns	
t _{PSS}	Propagation Delay Simultaneous Switching CLK, CLK to Q_n (Note 14)		2.7	ns	
t _{PHL}	Propagation Delay RESET to Q _n (Figure 6)		5.0	ns	
t _{SK(Pn-Pn)}	Output to Output Skew		200	ps	

Note 9: Refer to Figure 1 through Figure 7.


Note 10: This parameter is not production tested. Note 11: For data signal input slew rate \geq 1 V/ns.

Note 12: For data signal input slew rate ≥ 0.5 V/ns and < 1 V/ns.

Note 13: For CK, \overline{CK} signals input slew rates are \ge 1 V/ns.

Note 14: Simultaneous Switching is guaranteed by characterization.

SSTV16857 • SSTVN16857

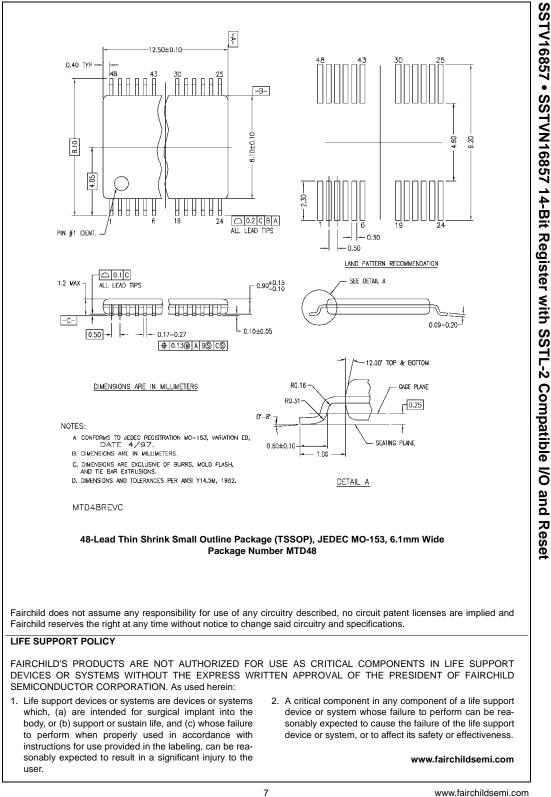
۷ін

VIL

VI(PP)

′он

VOL


VIH

VIL

VOH

VOL

www.fairchildsemi.com

