ロ
 ANALOG DEVICES

+5 V Powered CMOS RS-232 Drivers/Receivers

AD230-AD241

FEATURES

Single 5 V Power Supply
Meets All RS-232-C and V. 28 Specifications
Multiple Drivers and Receivers
On-Board DC-DC Converters
± 9 V Output Swing with +5 V Supply
Low Power CMOS: 5 mA Operation
Low Power Shutdown $\leq 1 \mu \mathrm{~A}$
3-State TTL/CMOS Receiver Outputs
$\pm 30 \times$ Receiver Input Levels
Plugin Replacement for MAX230-241

GENERAL DESCRIPTION
The AD230 family of 5 V only, RS-232 line driversfeceners provides a variety of configurations to fit most communication needs, especially in applications where $\pm 12 \mathrm{~V}$ is not available. The AD230, AD235, AD236 and AD241 feature a low power shutdown mode which reduces power dissipation to less than $5 \mu \mathrm{~W}$ making them ideally suited for battery powered equipment. The AD233 and AD235 do not require any external components and are particularly useful in applications where printed circuit board space is critical.

$\left(V_{c c}=+5 \mathrm{~V} \pm 10 \%\right.$ (AD231, AD232, AD234, AD236, AD238, AD239, AD241); $V_{c c}=+5 \mathrm{~V} \pm 5 \%$ (AD233,
SPECIFICATIONS AD235); $\mathrm{V}+=7.5 \mathrm{~V}$ to 13.2 V (AD231) \& $\mathrm{V}+=12 \mathrm{~V} \pm 10 \%$ (AD239); All Specifications $\mathrm{T}_{\min }$ to $\mathrm{T}_{\text {max }}$ unless otherwise noted.)

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

Figure 3. AD231 DIP \& SOIC Pin Configurations

Figure 8. AD233 Typical Operating Circuit

AD230-AD241

Figure 12. AD235 Typical Operating Circuit

Figure 16. AD237 Typical Operating Circuit

Figure 20. AD239 Typical Operating Circuit

AD230-AD241

PIN FUNCTION DESCRIPTION

Mnemonic

Function

QD2 3) the capacitor is coeternally and no external connection this pin is required.
(AD230 AD 2 2 AD 2p4, AD230, AD 237 , AD 338, AD 241) External capacitor (+ terminal) is (AD 233 The capacitor is connected int anally and no extern al connection to this pin is required.
 Transmitter (Driver) Inputs. These inputs
resistor to V_{CC} is connected on each input.
$\mathrm{T}_{\text {OUT }}$
R_{IN}
Transmitter (Driver) Outputs. These are RS-232 levels (typically $\pm 10 \mathrm{~V}$). Receiver Inputs. These inputs accept RS-232 signal levels. An internal $5 \mathrm{k} \Omega$ pull-down resistor to
$\mathrm{R}_{\text {OUT }}$
Receiver outputs. These are TTL/CMOS levels.
$\overline{\mathrm{EN}}$
Enable Input (AD235, AD236, AD239, AD241). This is an active low input which is used to enable the receiver outputs. With $\overline{\mathrm{EN}}=0 \mathrm{~V}$, the receiver outputs are enabled. With $\overline{\mathrm{EN}}=5 \mathrm{~V}$, the outputs are placed in a high impedance state. This facility is useful for connecting to microprocessor systems.
SD Shutdown input. (AD230, AD235, AD236, AD241). With $\mathrm{SD}=5 \mathrm{~V}$, the charge pump is disabled, the receiver outputs are placed in a high impedance state and the driver outputs are turned off. The supply current reduces to $<5 \mu \mathrm{~A}$ making these parts ideally suited for battery operation.
NC No Connect. No connections are required to this pin.

GENERAL INFORMATION

The AD230-AD241 family of RS-232 drivers/receivers are designed to solve interface problems by meeting the RS-232-C specifications while using a single digital +5 V supply. The RS-232-C standard requires transmitters which will deliver $\pm 5 \mathrm{~V}$ minimum on the transmission channel and receivers which can accept signal levels down to $\pm 3 \mathrm{~V}$. The AD230-AD241 meet these requirements by integrating step up voltage converters and level shifting transmitters and receivers onto the same chip. CMOS technology is used to keep the power dissipation to an absolute minimum. A comprehensive range of transmitter/ receiver combinations is available to cover most communications needs.
The AD230, AD235, AD236 and AD241 are particularly useful in battery powered systems as they feature a low power shutdown mode which reduces power dissipation to less than $5 \mu \mathrm{~W}$.
The AD233 and AD235 are designed for applications where space saving is important as the charge pump capacitors are molde h into the package.
The AD231 and AD239 nclucte only a negative charge pump convefter and ane in ended papplictions where a positive $1 \% \mathrm{~V}$ s available. cropsecessor dat bus the AD23). AD230 AD 239 ant $\mathrm{AD} / 241$ feature an enable (ED) fution Wr en disabisd, the rece iver outputs are placed in a high impechace state.

CIRCUIT DESCRIPTION

The internal circuitry in the AD230-AD241 consists of th main sections. These are:
(a) A charge pump voltage converter
(b) RS-232 to TTL/CMOS receivers
(c) TTL/CMOS to RS-232 transmitters

Charge Pump DC-DC Voltage Converter

The charge pump voltage converter consists of an oscillator and a switching matrix. The converter generates a $\pm 10 \mathrm{~V}$ supply from the input 5 V level. This is done in two stages using a switched capacitor technique as illustrated in Figures 23 and 24. First, the 5 V input supply is doubled to 10 V using capacitor Cl as the charge storage element. The 10 V level is then inverted to generate -10 V using C 2 as the storage element.

Figure 23. Charge-Pump Voltage Doubler

Figure 24. Charge-Pump Voltage Inverter
Capacitors C3 and C4 are used to reduce the output ripple. Their values are not critical and can be reduced if higher levels of ripple are acceptable. The charge pump capacitors C 1 and C 2 may also be reduced at the expense of higher output impedance on the $\mathrm{V}+$ and V - supplies.
The $\mathrm{V}+$ and V - supplies may also be used to power external circuitry if the current requirements are small.

Transmitter (Driver) Section

The drivers convert TTL/CMOS input levels into RS-232-C output levels. With $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and driving a typical RS-232-C load, the output voltage swing is $\pm 9 \mathrm{~V}$. Even under worst case conditions the drivers are guaranteed to meet the ± 5 V RS-232-C mbimum requirement.
mpimum requirement.
Fhe inpet theeshold levels are both TTL and CMOS compatible fith the switching threshold set $+\mathrm{V}_{\mathrm{cc}} /$ 4. With a nominal $V_{\mathrm{C}}=5 \mathrm{v}$ the switching threskeld is $12 \leq \mathbb{1}$ typical. Unused in uts mas be left unconnected, as an internal 400 ks pull-up .esistor pulls them hig forcing thro outputs Into a tow state. As resuired by R $\$-232-\mathrm{C}$ standard, the slev rate is imied to less than $30 \times 1 / \mathrm{s}$ without the need for $2 n$ e ternal s/ew hiting capacitor and the outpoimpedance in the power- ff state is greater than 300Ω.

Receiver Section

The receivers are inverting level shifters which accept RS-232 input levels ($\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$) and translate them into 5 V TTL/ CMOS levels. The inputs have internal $5 \mathrm{k} \Omega$ pull-down resistors to ground and are also protected against overvoltages of up to $\pm 30 \mathrm{~V}$. The guaranteed switching thresholds are 0.8 V minimum and 2.4 V maximum which are well within the $\pm 3 \mathrm{~V}$ RS-232 requirement. The low level threshold is deliberately positive as it ensures that an unconnected input will be interpreted as a low level.
The receivers have Schmitt trigger inputs with a hysteresis level of 0.5 V . This ensures error-free reception for both noisy inputs and for inputs with slow transition times.

Shutdown (SD)

The AD230, AD235, AD236 and AD241 feature a control input which may be used to disable the part and reduce the power consumption to less than $5 \mu \mathrm{~W}$. This is very useful in battery operated systems. With $\mathrm{SD}=5 \mathrm{~V}$, the charge pump is disabled, the receiver outputs are placed in a high impedance state and the driver outputs are turned off.

Enable Input

The AD235, AD236, AD239 and AD241 feature an enable input $(\overline{\mathrm{EN}})$. It is used to enable the receiver outputs. With $\overline{\mathrm{EN}}=0 \mathrm{~V}$ the outputs are enabled. With $\overline{\mathrm{EN}}=5 \mathrm{~V}$ the outputs are placed in a high impedance state. This function allows the outputs to be connected directly to a microprocessor data bus. It can also be used to allow receivers from different devices to share a common data line. The timing diagram for the enable function is shown in Figure 25.

APPLICATION HINTS

Protection for Shorts to $\pm 15 \mathrm{~V}$ Supplies

The driver outputs are internally protected against shorting to ground, to other driver outputs, to $\mathrm{V}+$ or to $\mathrm{V}-$. In practice, these are the highest voltages likely to be encountered in an application. If the possibility exists for shorting to $\pm 15 \mathrm{~V}$, then it is recommended that external protection be provided. This may be done by connecting a series 220Ω resistor on each transmitter output.

Figure 26. Protection for Shorts to $\pm 15 \mathrm{~V}$

Over-Voltage Protection for AD231, AD239

The AD231 and AD239 require an external +12 V supply as they do not contain an internal $\mathrm{V}+$ generator. It is important that this supply be switched on before the $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ supply.

If there is a possibility that the V_{CC} supply will be switched on first, or if the 12 V supply may be inadvertently shorted to ground, then it is recommended that a diode (1N914 or equivalent) be connected in series with the 12 V input. This will not affect normal operation but it ensures that under fault conditions, the device will be protected.

Figure 27. Diode Protection Scheme for AD231 and AD239

Hieh Baud Rate Operation
The RS-232-C stardard requires that "For Data and Timing interclange Circuit, th time for the signal to through the transtion region shall pot exceevene millisecopd of four pe cent the hombel duration of thesignel element on tha interchenge ircuit, 19.2 kbaud, thle transtates into a min imup slew ate of The typical slew rate of the D $230-A D-41$ is $3 / \mu$ under maximum loading conditions and thereffre mee sthe standard.
The V. 28 standard is more stringent and requirestransitiot time which will not exceed three percent of the nominal sigmel duration. This translates into a slew rate of $4 \mathrm{~V} / \mu \mathrm{s}$ at the maximum 19.2 kbaud rate. In practice, less than ideal slew rates will have negligible affect on the data transmission. The result is that the valid mark/space duration is slightly shorter than the optimum because the signal spends more time in the transition region. The valid duration remains more than adequate for errorfree reception even at maximum transmission rates and under worst case load conditions.

Driving Long Cables

In accordance with the RS-232-C standard, long cables are permissible provided that the total load capacitance does not exceed 2500 pF . For longer cables which do exceed this, then it is possible to trade off baud rate vs. cable length. Large load capacitances cause a reduction in slew rate, and hence the maximum transmission baud rate is decreased. The AD230-AD241 are designed so that the slew rate reduction with increasing load capacitance is minimized.

For the receivers, it is important that a high level of noise immunity be inbuilt so that slow rise and fall times do not cause multiple output transitions as the signal passes slowly through the transition region. The AD230-AD241 have 0.5 V of hysteresis to guard against this. This ensures that, even in noisy environments, error-free reception can be achieved.

[^0]
OUTLINE DIMENSIONS

14-Lead Plastic DIP (N-14)
14-Lead Cerdip (Q-14)

16-Lead SOIC (R-16)
20-Lead Plastic DIP (N-20)

LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH
LEADS ARE SOLDER OR TIN-PLATED KOVAR OR ALLOY 42

24-Lead Plastic DIP (N-24)

notes

1. LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH.
2. PLASTIC LEADS WIL BE ETHER SOLDER DIPPED OR TIN LEAD PLATED

24-Lead SOIC (R-24)

1. LEAD NO. 1 IDENTIFIED BY A DOT
2. SOII LEADS WIU BE EITHER TIN PLATED OR SOLDER DIPPED
IN ACCORDANCE WITH MIL-M-38510 REOUIREMENTS.

28-Lead SOIC (R-28)

1. LeAd No. 1 IDentified by a dot.
2. SOIC LEADS WIL BE EITHER TIN PLATED OR SOLDER DIPPED
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.

[^0]: * $=0.6^{\prime \prime}$ DIP package $\left(\right.$ all other DIP packages $\left.=0.3^{\prime \prime}\right)$

