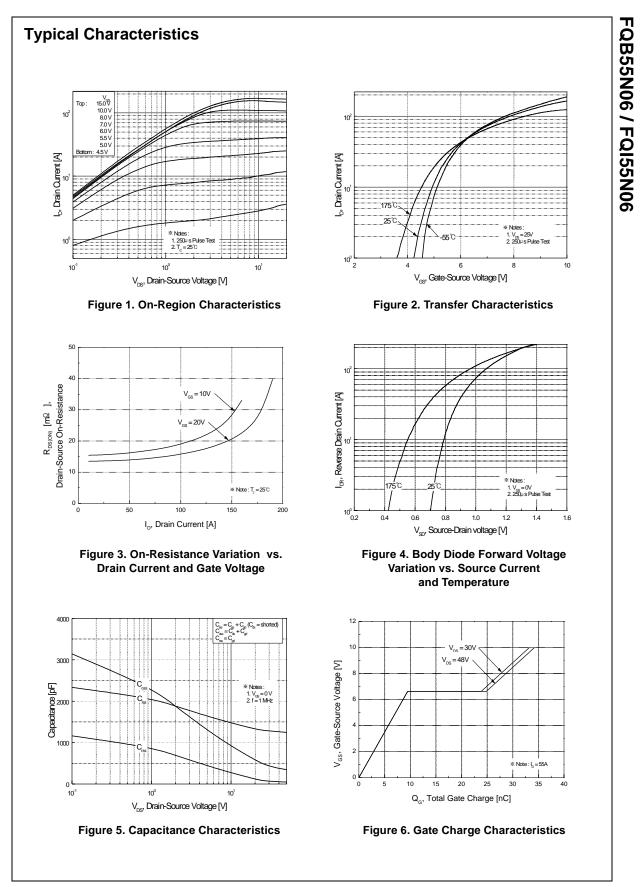


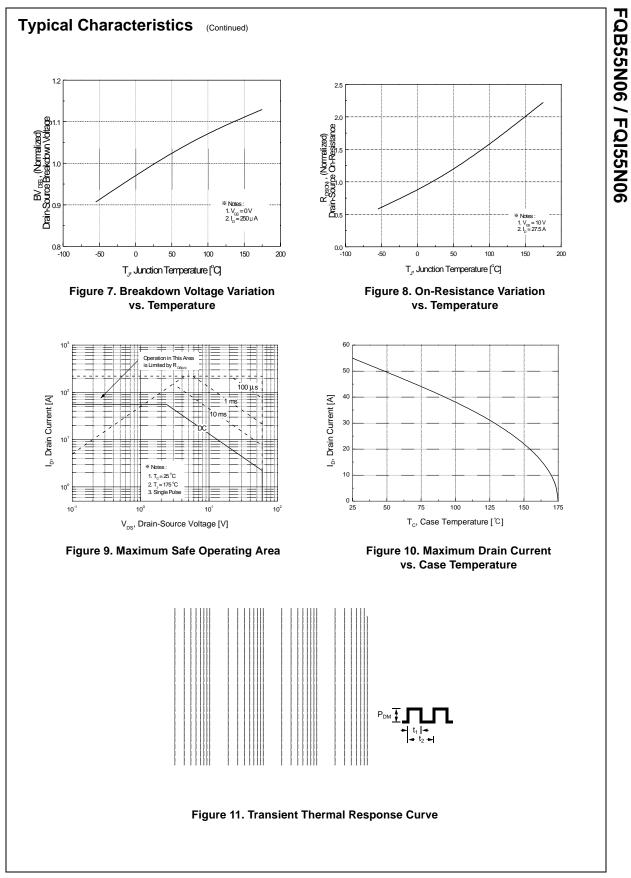
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

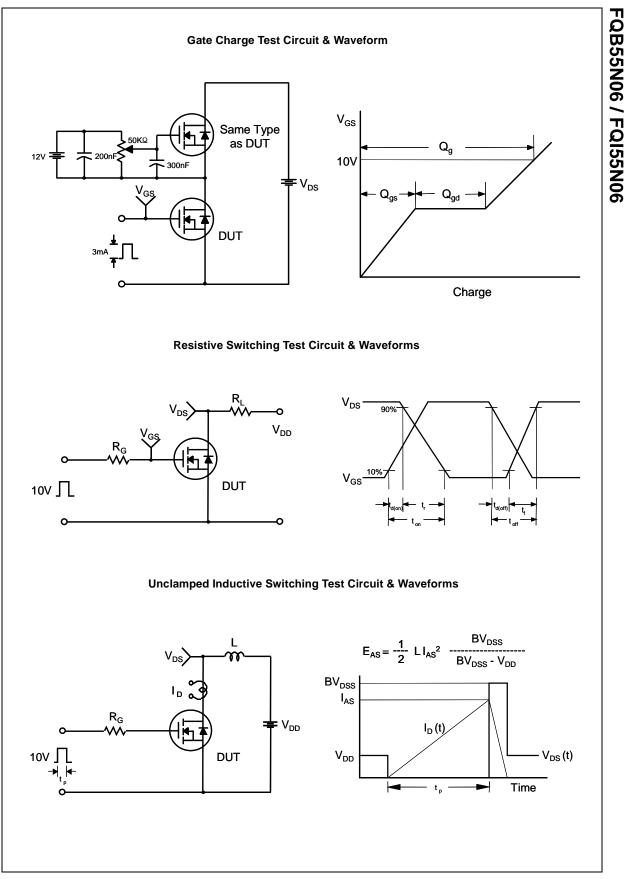
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as automotive, DC/ DC converters, and high efficiency switching for power management in portable and battery operated products.

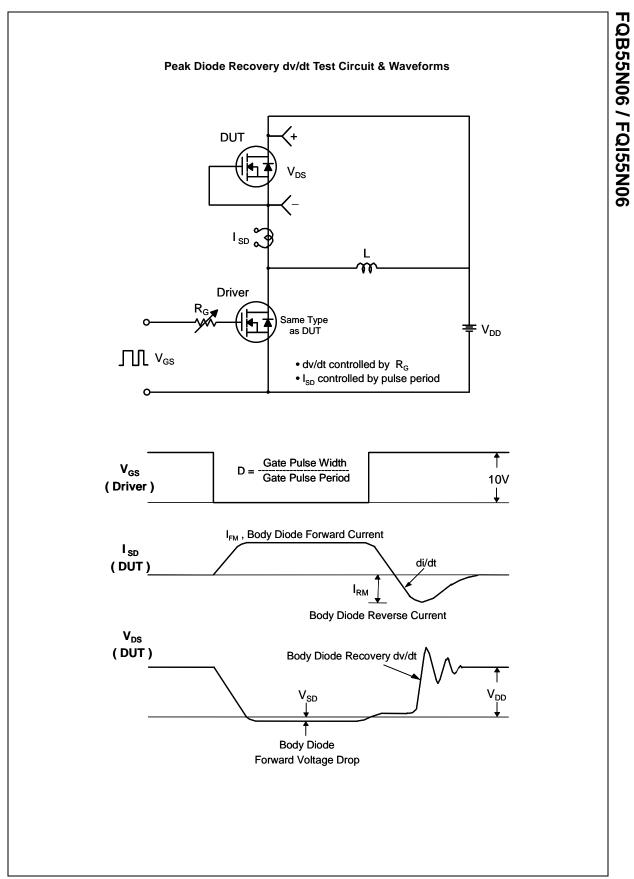
- 55A, 60V, R_{DS(on)} = 0.020Ω @V_{GS} = 10 V
- Low gate charge (typical 35 nC)
- Low Crss (typical 85 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating

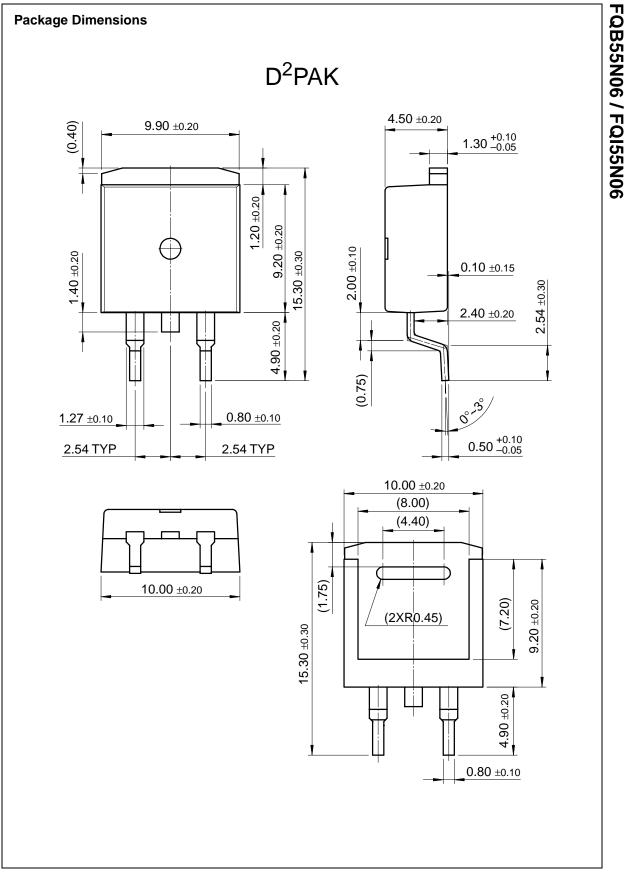
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

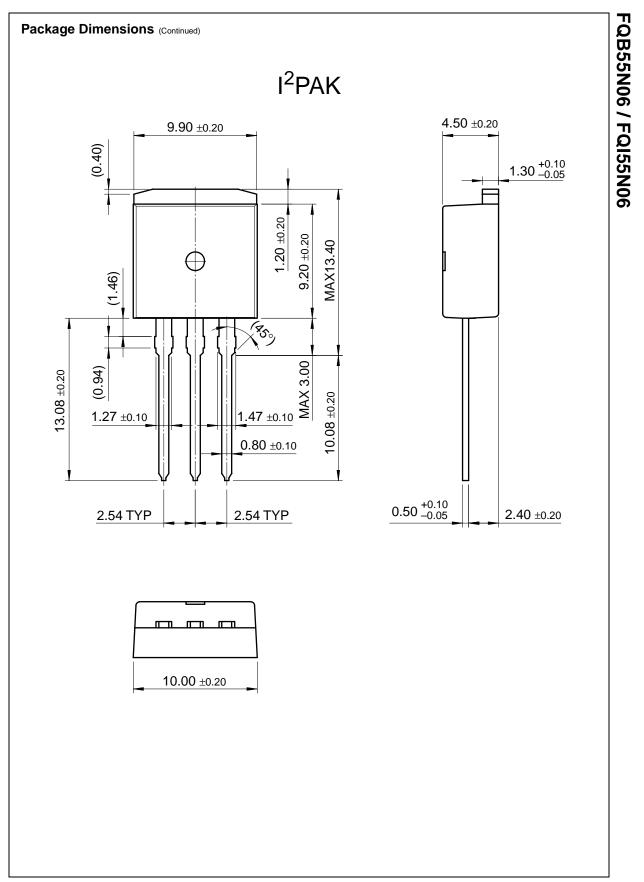

Symbol	Parameter		FQB55N06 / FQI55N06	Units	
V _{DSS}	Drain-Source Voltage		60	V	
I _D	Drain Current - Continuous (T _C = 25°	C)	55	А	
	- Continuous (T _C = 100)°C)	38.9	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	220	А	
V _{GSS}	Gate-Source Voltage		± 25	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	545	mJ	
I _{AR}	Avalanche Current	(Note 1)	55	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	13.3	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	7.0	V/ns	
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.75	W	
	Power Dissipation $(T_C = 25^{\circ}C)$		133	W	
	- Derate above 25°C	t	0.89	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	


Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.13	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W
* When mount	ed on the minimum pad size recommended (PCB Mount)			•


FQB55N06 / FQI55N06


racteristics Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward	$V_{GS} = 0$ V, $I_D = 250 \mu A$ $I_D = 250 \mu A$, Referenced to 25°C	60			
Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current		60			
Coefficient Zero Gate Voltage Drain Current					V
	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$		0.06		V/°C
	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
Gate-Body Leakage Current, Forward	V _{DS} = 48 V, T _C = 150°C			10	μΑ
	V_{GS} = 25 V, V_{DS} = 0 V			100	nA
Gate-Body Leakage Current, Reverse	V_{GS} = -25 V, V_{DS} = 0 V			-100	nA
racteristics					
	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{I}_{D} = 27.5 \text{ A}$		0.015	0.020	Ω
Forward Transconductance	V _{DS} = 25 V, I _D = 27.5 A (Note 4)		30		S
c Characteristics					
Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		1300	1690	pF
Output Capacitance			490	640	pF
Reverse Transfer Capacitance			85	110	pF
Turn-On Delay Time	V _{DD} = 30 V, I _D = 27.5 A,		15	40	ns
Turn On Pico Timo			120	270	
Turn-On Rise Time	$R_{\rm G} = 25 \ \Omega$		130 60	270 130	ns
Turn-Off Delay Time	$R_{G} = 25 \Omega$		60	130	ns ns
Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5)		60 75	130 160	ns ns ns
Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_{G} = 25 $ Ω (Note 4, 5) $V_{DS} = 48 $ V, $I_{D} = 55 $ A,		60 75 35	130	ns ns ns nC
Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5)		60 75	130 160 46	ns ns ns
Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics ar	$R_{G} = 25 \ \Omega$ $(Note 4, 5)$ $V_{DS} = 48 \ V, \ I_{D} = 55 \ A,$ $V_{GS} = 10 \ V$ $(Note 4, 5)$ The Maximum Ratings		60 75 35 9.5 15.5	130 160 46 	ns ns nC nC nC
Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics ar Maximum Continuous Drain-Source Dio	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 48 V, I_{D} = 55 A,$ $V_{GS} = 10 V$ (Note 4, 5) (No		60 75 35 9.5 15.5	130 160 46 55	ns ns nC nC nC
Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 48 \ V, I_{D} = 55 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5) (Note 4		60 75 35 9.5 15.5	130 160 46 55 220	ns ns nC nC nC A
Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics ar Maximum Continuous Drain-Source Dio	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 48 V, I_{D} = 55 A,$ $V_{GS} = 10 V$ (Note 4, 5) (No		60 75 35 9.5 15.5	130 160 46 55	ns ns nC nC nC
0	On-Resistance Forward Transconductance C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance ng Characteristics	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$ Static Drain-Source On-Resistance $V_{GS} = 10 \text{V}$, $I_D = 27.5 \text{A}$ Forward Transconductance $V_{DS} = 25 \text{V}$, $I_D = 27.5 \text{A}$ Forward Transconductance $V_{DS} = 25 \text{V}$, $I_D = 27.5 \text{A}$ Input Capacitance $V_{DS} = 25 \text{V}$, $V_{GS} = 0 \text{V}$,Output Capacitance $V_{DS} = 25 \text{V}$, $V_{GS} = 0 \text{V}$,Reverse Transfer Capacitance $f = 1.0 \text{MHz}$ Turn On Delay TimeTurn On Delay Time	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$ 2.0Static Drain-Source On-Resistance $V_{GS} = 10 \text{V}$, $I_D = 27.5 \text{A}$ Forward Transconductance $V_{DS} = 25 \text{V}$, $I_D = 27.5 \text{A}$ (Note 4)Forward Transconductance $V_{DS} = 25 \text{V}$, $I_D = 27.5 \text{A}$ (Note 4)C CharacteristicsInput Capacitance $V_{DS} = 25 \text{V}$, $V_{GS} = 0 \text{V}$,Output Capacitance $f = 1.0 \text{MHz}$ Reverse Transfer Capacitanceng CharacteristicsTurn On Delay Time	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 2.0Static Drain-Source On-Resistance $V_{GS} = 10 \ V$, $I_D = 27.5 \ A$ 0.015Forward Transconductance $V_{DS} = 25 \ V$, $I_D = 27.5 \ A$ (Note 4)30 c Characteristics Input Capacitance $V_{DS} = 25 \ V$, $V_{GS} = 0 \ V$, $Gutput Capacitance1300Reverse Transfer Capacitancef = 1.0 \ MHz85Static CharacteristicsTurn On Dolay Time$	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$ 2.0 4.0 Static Drain-Source $V_{GS} = 10 \text{V}$, $I_D = 27.5 \text{A}$ 0.015 0.020 On-Resistance $V_{DS} = 25 \text{V}$, $I_D = 27.5 \text{A}$ 30 Forward Transconductance $V_{DS} = 25 \text{V}$, $I_D = 27.5 \text{A}$ (Note 4) 30 C Characteristics Input Capacitance $V_{DS} = 25 \text{V}$, $V_{GS} = 0 \text{V}$, 1300 1690 Output Capacitance $V_{DS} = 25 \text{V}$, $V_{GS} = 0 \text{V}$, 490 640 Reverse Transfer Capacitance $f = 1.0 \text{MHz}$ 85 110 ng Characteristics 85 10 40



TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOPLANAR™
Bottomless™	FASTr™	PACMAN™
CoolFET™	FRFET™	POP™
CROSSVOLT™	GlobalOptoisolator™	PowerTrench [®]
DenseTrench™	GTO™	QFET™
DOME™	HiSeC™	QS™
EcoSPARK™	ISOPLANAR™	QT Optoelectronics™
E ² CMOS™	LittleFET™	Quiet Series™
EnSigna™	MicroFET™	SLIENT SWITCHER [®]
FACT™	MICROWIRE™	SMART START™
FACT Quiet Series™	OPTOLOGIC™	Stealth™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] UHC[™] UltraFET[®] VCX[™]

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Datasheet

datasheet

PDF

۲E-

Download this

e-mail this datasheet

This pagePrint version

Products groups Analog and Mixed Signal Discrete Interface Logic Microcontrollers Non-Volatile Memory **Optoelectronics** Markets and applications New products Product selection and parametric search Cross-reference search technical information

buy products

technical support

my Fairchild

company

FQB55N06 60V N-Channel OFET

Contents General description | Features | Product status/pricing/packaging

General description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as DC/DC converters, high efficiency switching for power management in portable and battery operated products.

back to top

Features

- 55A, 60V, $R_{DS(on)} = 0.020\Omega @V_{GS} = 10 V$
- Low gate charge (typical 35 nC)
- Low Crss (typical 85 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating

back to top

Product status/pricing/packaging

Related Links

Request samples
Dotted line
How to order products
Dotted line
Product Change Notices
(PCNs)
Dotted line
Support
Dotted line
Distributor and field sales
representatives
Dotted line
Quality and reliability
Dotted line

Design tools

Product	Product status	Pricing*	Package type	Leads	Packing method
FQB55N06TM	Full Production	\$0.93	TO-263(D2PAK)	2	TAPE REEL

* 1,000 piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor