

# MICROCIRCUIT DATA SHEET

MNMM54C161-X REV 1A0

Original Creation Date: 10/18/95 Last Update Date: 05/19/97 Last Major Revision Date: 04/02/97

## BINARY COUNTER WITH ASYNCHRONOUS CLEAR

### General Description

These (synchronous presettable up) counters are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They feature an internal carry lookahead for fast counting schemes and for cascading packages without additional gating.

A low level at the load input disables counting and causes the outputs to agree with the data input after the next positive clock edge. The clear function for the Cl61 is asynchronous and a low level at the clear inputs sets all four outputs low regardless of the state of the clock.

Counting is enabled when both count enable inputs are high. Input T is fed forward to also enable the carry out. The carry output is a positive pulse with a duration approximately equal to the positive portion of QA and can be used to enable successive cascaded stages. Logic transitions at the enable P or T inputs can occur when the clock is high or low.

#### Industry Part Number

MM54C161

### Prime Die

MM54C161

| Processing                     | Subgrp | Description         | Temp ( $^{\circ}$ C) |
|--------------------------------|--------|---------------------|----------------------|
| MIL-STD-883, Method 5004       | 1      | Static tests at     | +25                  |
|                                | 2      | Static tests at     | +125                 |
|                                | 3      | Static tests at     | -55                  |
| Ouality Conformance Inspection | 4      | Dynamic tests at    | +25                  |
|                                | 5      | Dynamic tests at    | +125                 |
| MIL-STD-883 Method 5005        | 6      | Dynamic tests at    | -55                  |
| MID-SID-005, Method 5005       | 7      | Functional tests at | +25                  |
|                                | 8A     | Functional tests at | +125                 |
|                                | 8B     | Functional tests at | -55                  |
|                                | 9      | Switching tests at  | +25                  |
|                                | 10     | Switching tests at  | +125                 |

11

Switching tests at

-55

### NS Part Numbers

MM54C161J/883 MM54C161W/883

### Features

- High noise margin
- High noise immunity
- Tenth power TTL compatible
- Wide supply voltage range
- Internal look-ahead for fast counting schemes
- Carry output for N-bit cascading
- Load control line
- Synchronously programmable

1V guaranteed 0.45 Vcc (typ.) Drives 2 LPTTL loads 3V to 15V

# (Absolute Maximum Ratings)

| Voltage at Any Pin          |                    |
|-----------------------------|--------------------|
|                             | -0.3V to Vcc +0.3V |
| Operating Temperature Range | -55 C to +125 C    |
| Storage Temperature Range   |                    |
|                             | -65 C to +150 C    |
| Maximum Vcc Voltage         | 1.017              |
|                             | 180                |
| Power Dissipation (Pd)      |                    |
| Dual-In-Line                | 700mW              |
| Small Outline               | 500mW              |
| Operating Vcc Range         |                    |
|                             | 3V to 15V          |
| Lead Temperature            |                    |
| (Soldering, 10 seconds)     | 260 C              |

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

# Electrical Characteristics

## DC PARAMETERS: CMOS TO CMOS:

| SYMBOL            | PARAMETER                     | CONDITIONS                                        | NOTES | PIN-<br>NAME | MIN | MAX   | UNIT | SUB-<br>GROUPS |
|-------------------|-------------------------------|---------------------------------------------------|-------|--------------|-----|-------|------|----------------|
| Vih               | Logical "1" Input<br>Voltage  | Vcc = 5V                                          | 1     |              | 3.5 |       | V    | 1, 2,<br>3     |
|                   |                               | Vcc = 10V                                         | 1     |              | 8   |       | V    | 1, 2,<br>3     |
| Vil               | Logical "0" Input<br>Voltage  | Vcc = 5V                                          | 1     |              |     | 1.5   | V    | 1, 2,<br>3     |
|                   |                               | Vcc = 10V                                         | 1     |              |     | 2     | V    | 1, 2,<br>3     |
| Voh               | Logical "1"<br>Output Voltage | Vcc = 5V, Iout = -10uA, Vih = 3.5V,<br>Vil = 1.5V |       |              | 4.5 |       | V    | 1, 2,<br>3     |
|                   |                               | Vcc = 10V, Iout = -10uA, Vih = 8V,<br>Vil = 2V    |       |              | 9   |       | V    | 1, 2,<br>3     |
| Vol Logi<br>Outpu | Logical "0"<br>Output Voltage | Vcc = 5V, Iout = 10uA, Vih = 3.5V,<br>Vil = 1.5V  |       |              |     | 0.5   | V    | 1, 2,<br>3     |
|                   |                               | Vcc = 10V, Iout = 10uA, Vih = 8V,<br>Vil = 2V     |       |              |     | 1     | V    | 1, 2,<br>3     |
| Iih               | Logical "1" Input<br>Current  | Vcc = 15V, Vin = 15V                              |       |              |     | 0.15  | uA   | 1, 3           |
|                   |                               |                                                   |       |              |     | 1     | uA   | 2              |
| Iil               | Logical "0" Input             | Vcc = 15V, Vin = 0V                               |       |              |     | -0.15 | uA   | 1, 3           |
|                   |                               |                                                   |       |              |     | -1    | uA   | 2              |
| Icc               | Quiescent Device              | Vcc = 15V                                         |       |              |     | 10    | uA   | 1, 3           |
|                   |                               |                                                   |       |              |     | 300   | uA   | 2              |

## DC PARAMETERS: CMOS TO LPTTL:

| Vih   | Logical "1" Input<br>Voltage  | Vcc = 4.5V                                         | 1 | 3   |     | V | 1, 2,<br>3 |
|-------|-------------------------------|----------------------------------------------------|---|-----|-----|---|------------|
| Vil I | Logical "0" Input<br>Voltage  | Vcc = 4.5V                                         | 1 |     | 0.8 | V | 1, 2       |
|       |                               |                                                    | 1 |     | 0.5 | V | 3          |
| Voh   | Logical "1"<br>Output Voltage | Vcc = 4.5V, Iout = -360uA, Vih = 3V,<br>Vil = 0.8V |   | 2.4 |     | V | 1, 2,<br>3 |
| Vol   | Logical "0"<br>Output Voltage | Vcc = 4.5V, Iout = 360uA, Vih = 3V,<br>Vil = 0.8V  |   |     | 0.4 | V | 1, 2,<br>3 |

# Electrical Characteristics

DC PARAMETERS: OUTPUT DRIVE:

| SYMBOL  | PARAMETER                | CONDITIONS                         | NOTES | PIN-<br>NAME | MIN   | MAX | UNIT | SUB-<br>GROUPS |
|---------|--------------------------|------------------------------------|-------|--------------|-------|-----|------|----------------|
| Isource | Output Source<br>Current | Vcc = 5V, $Vout = 0$ , $Vin = 0$   |       |              | -1.75 |     | mA   | 1              |
|         |                          | Vcc = 10V, Vout = 0, Vin = 0       |       |              | -8    |     | mA   | 1              |
| Isink   | Output Sink<br>Current   | Vcc = 5V, $Vout = 5V$ , $Vin = 5V$ |       |              | 1.75  |     | mA   | 1              |
|         |                          | Vcc = 10V, Vout = 10V, Vin = 10V   |       |              | 8     |     | mA   | 1              |

### AC PARAMETERS: PROPAGATION DELAY TIME:

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Cl = 50pF, Rl = 200K Ohms or equivalent impedance provided by diode load.

| tPHL | Clock to Q                   | Vcc = 5V |   |  | 400 | nS | 9 |
|------|------------------------------|----------|---|--|-----|----|---|
| tPLH | Clock to Q                   | Vcc = 5V |   |  | 400 | nS | 9 |
| tPHL | Clock to Carry               | Vcc = 5V |   |  | 450 | nS | 9 |
| tPLH | Clock to Carry               | Vcc = 5V |   |  | 450 | nS | 9 |
| tPHL | Enable T to Carry            | Vcc = 5V |   |  | 290 | nS | 9 |
| tPLH | Enable T to Carry            | Vcc = 5V |   |  | 290 | nS | 9 |
| tPHL | Clear to Q                   | Vcc = 5V |   |  | 300 | nS | 9 |
| tW   | Minimum Clock<br>Pulse Width | Vcc = 5V | 1 |  | 170 | nS | 9 |

Note 1: Parameter tested go-no-go only.