IS62C5128BL, IS65C5128BL

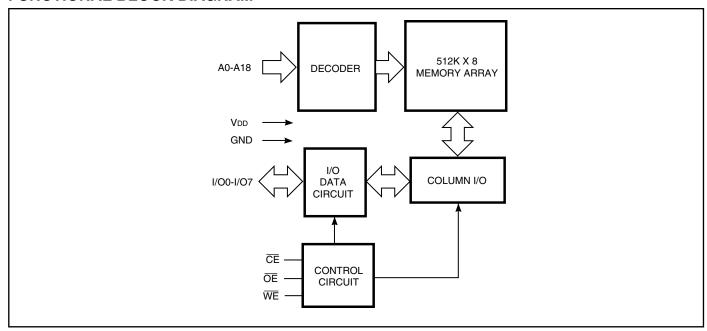
512K x 8 HIGH-SPEED CMOS STATIC RAM

JULY 2011

FEATURES

- · High-speed access time: 45ns
- Low Active Power: 50 mW (typical)
- Low Standby Power: 10 μW (typical) CMOS standby
- TTL compatible interface levels
- Single 5V ± 10% power supply
- Fully static operation: no clock or refresh required
- Available in 32-pin sTSOP-I, 32-pin SOP and 32-pin TSOP-II packages
- Commercial, Industrial and Automotive temperature ranges available
- Lead-free available

DESCRIPTION


The ISSI IS62C5128BL and IS65C5128BL are high-speed, 4,194,304-bit static RAMs organized as 524,288 words by 8 bits. They are fabricated using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 45ns with low power consumption.

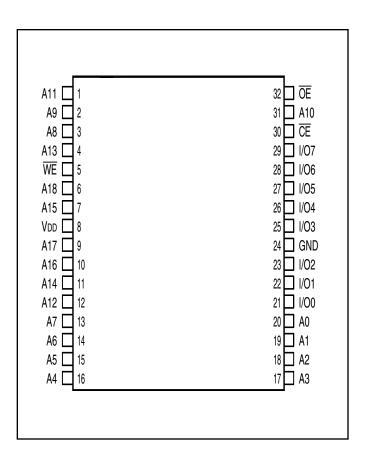
When $\overline{\text{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$. The active LOW Write Enable ($\overline{\text{WE}}$) controls both writing and reading of the memory. A data byte allows Upper Byte ($\overline{\text{UB}}$) and Lower Byte ($\overline{\text{LB}}$) access.

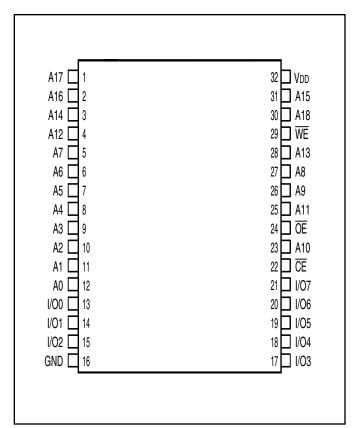
The IS62C5128BL and IS65C5128BL are packaged in the JEDEC standard 32-pin sTSOP-I, 32-pin SOP and 32-pin TSOP-II packages

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2010 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.


Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances



PIN CONFIGURATION

32-pin sTSOP (TYPE I)

32-pin SOP 32-pin TSOP (TYPE II)

PIN DESCRIPTIONS

A0-A18	Address Inputs
CE	Chip Enable 1 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
1/00-1/0	7 Input/Output
VDD	Power
GND	Ground

TRUTH TABLE

					I/O PIN	
Mode	WE	CE	ŌĒ	1/00-1/07	VDD Current	
Not Selected	Х	Н	Х	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	High-Z	lcc1, lcc2	
Read	Н	L	L	D оит	lcc1, lcc2	
Write	L	L	Х	Din	lcc1, lcc2	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V	
Тѕтс	Storage Temperature	-65 to +150	°C	
Рт	Power Dissipation	1.5	W	
Іоит	DC Output Current (LOW)	20	mA	

Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	$V_{OUT} = 0V$	8	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $TA = 25^{\circ}C$, f = 1 MHz, VDD = 5.0V.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -1.0 \text{ mA}$		2.4	_	V
Vol	Output LOW Voltage	VDD = Min., IOL = 2.1 mA		_	0.4	V
VIH	Input HIGH Voltage(1)			2.2	$V_{DD} + 0.5$	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lu	Input Leakage	$GND \leq VIN \leq VDD$	Com.	-1	1	μΑ
			Ind.	-2	2	
			Auto.	- 5	5	
ILO	Output Leakage	$GND \leq VOUT \leq VDD$	Com.	-1	1	μΑ
	_	Outputs Disabled	Ind.	-2	2	
			Auto.	– 5	5	

Note:

1. VILL (min) = -2.0V AC (pulse width <10 ns). Not 100% tested. VIHH (max) = V_{DD} + 2.0V AC (pulse width <10 ns). Not 100% tested.

OPERATING RANGE

Range	Ambient Temperature	V DD	Speed (ns)
Commercial	0°C to +70°C	5V ± 10%	45
Industrial	-40°C to +85°C	5V ± 10%	45
Automotive	-40°C to +125°C	5V ± 10%	45

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-4	5 ns	
Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Icc	Average operating	$\overline{CE} = V_{IL}, V_{DD} = Max.$	Com.	_	10	mA
	Current	I OUT= 0 mA , $f= 0$	Ind.	_	10	
			Auto.	_	10	
lcc1	VDD Dynamic Operating	VDD = Max., \overline{CE} = VIL	Com.	_	15	mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	_	20	
			Auto.	_	25	
			typ.(2)		10	
ISB1	TTL Standby Current	V _{DD} = Max.,	Com.	_	1	mA
	(TTL Inputs)	$V_{IN} = V_{IH} \text{ or } V_{IL}, \overline{CE} \geq V_{IH},$	Ind.	_	1.5	
		f = 0	Auto.	_	2	
IsB2	CMOS Standby	V _{DD} = Max.,	Com.	_	10	μΑ
	Current (CMOS Inputs)	$\overline{CE} \geq V_{DD} - 0.2V$,	Ind.	_	15	
		$V_{IN} \ge V_{DD} - 0.2V$,	Auto.	_	35	
		or $V_{\text{IN}} \leq V_{\text{SS}} + 0.2V$, $f = 0$	typ.		4	

At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
 Typical values are measured at VDD = 5V, TA = 25°C and not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-45		
Symbol	Parameter	Min. Max.	Unit	
t rc	Read Cycle Time	45 —	ns	
taa	Address Access Time	— 45	ns	
toha	Output Hold Time	3 —	ns	
tace	CE Access Time	— 45	ns	
tdoe	OE Access Time	— 20	ns	
thzoe(2)	OE to High-Z Output	0 15	ns	
tlzoe(2)	OE to Low-Z Output	5 —	ns	
thzce(2)	CE to High-Z Output	0 15	ns	
tLZCE ⁽²⁾	CE to Low-Z Output	5 —	ns	

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

ACTEST CONDITIONS

<u> </u>	
Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

ACTEST LOADS

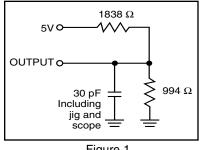
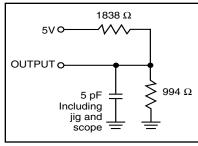
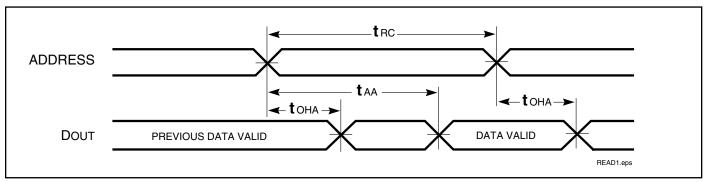
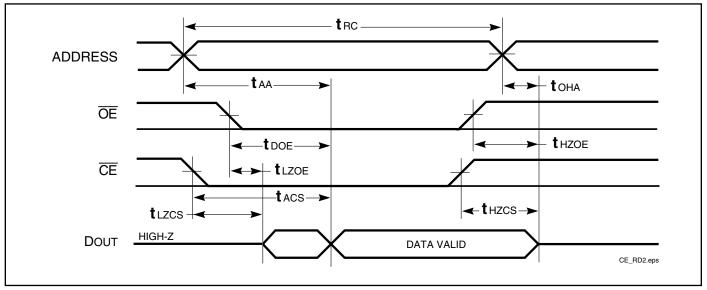


Figure 1


Figure 2

AC WAVEFORMS READ CYCLE NO. 1(1,2)

READ CYCLE NO. 2^(1,3)

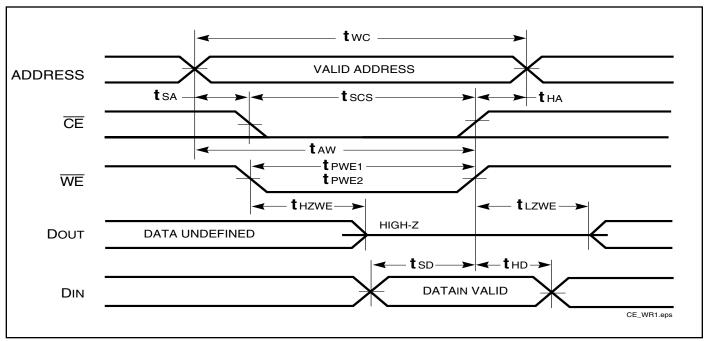
- Notes:

 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

				\ 1 3 37
		-4	5	
Symbol	Parameter	Min.	Max.	Unit
twc	Write Cycle Time	45	_	ns
tsce	CE to Write End	35	_	ns
taw	Address Setup Time to Write End	35	_	ns
t HA	Address Hold from Write End	0	_	ns
t sa	Address Setup Time	0	_	ns
tpwe1	$\overline{\text{WE}}$ Pulse Width ($\overline{\text{OE}}$ =High)	35	_	ns
tpwe2	WE Pulse Width (OE=Low)	35	_	ns
tsp	Data Setup to Write End	25	_	ns
t HD	Data Hold from Write End	0	_	ns
tHZWE ⁽²⁾	WE LOW to High-Z Output	_	15	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	5	_	ns

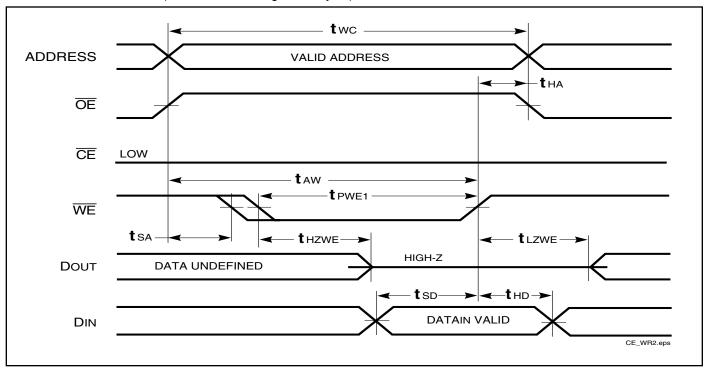
Notes:


2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

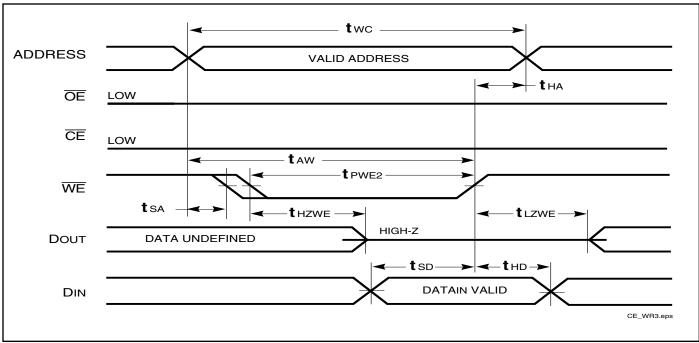
^{1.} Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

^{3.} The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

AC WAVEFORMS WRITE CYCLE NO. 1 (WE Controlled)(1,2)



Notes

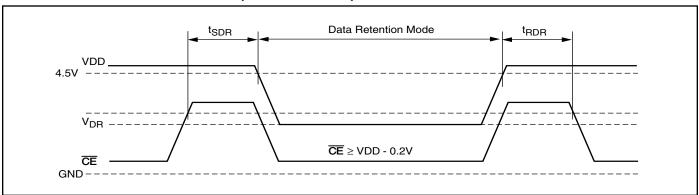

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.



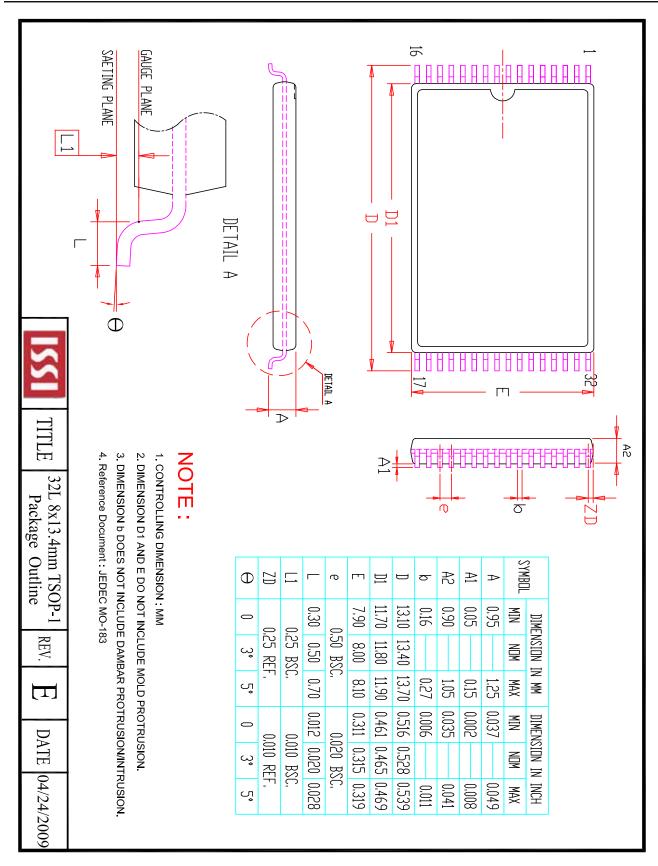
DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Max.	Unit
VDR	VDD for Data Retention	See Data Retention Waveform		2.0	5.5	V
IDR	Data Retention Current	$V_{DD} = 2.0V$, $\overline{CE} \ge V_{DD} - 0.2V$ $V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le V_{SS} + 0.2V$	Com. Ind.	_ _	10 15	μΑ
			Auto. typ. ⁽¹⁾	_ 2	35	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	ns
t RDR	Recovery Time	See Data Retention Waveform		trc	_	ns

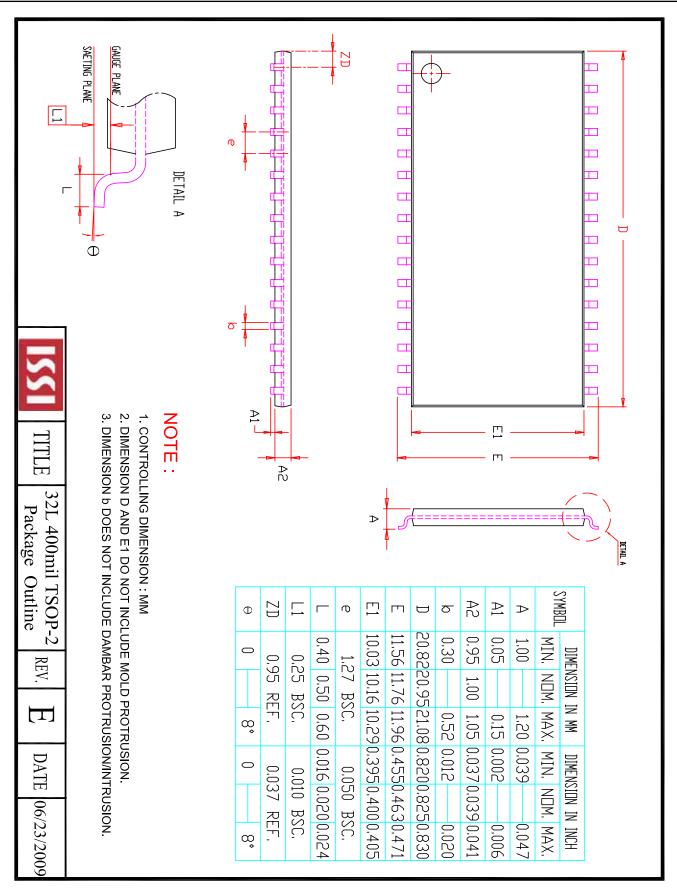
Note:

DATA RETENTION WAVEFORM (CE Controlled)

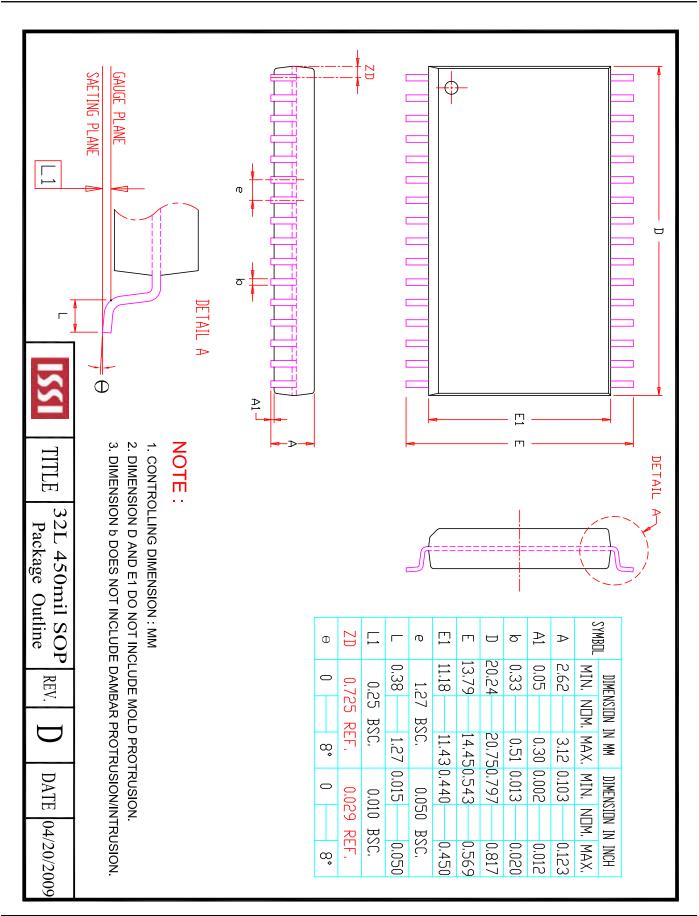
^{1.} Typical Values are measured at VDD = 5V, TA = 25°C and not 100% tested.



ORDERING INFORMATION


Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
45	IS62C5128BL-45QI	450-mil Plastic SOP
	IS62C5128BL-45QLI	450-mil Plastic SOP, Lead-free
	IS62C5128BL-45HI	32-pin STSOP-I
	IS62C5128BL-45HLI	32-pin STSOP-I, Lead-free
	IS62C5128BL-45TI	32-pin TSOP-II
	IS62C5128BL-45TLI	32-pin TSOP-II, Lead-free



Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ISSI:

IS62C5128BL-45TLI IS62C5128BL-45TLI-TR IS62C5128BL-45QLI IS62C5128BL-45QLI-TR