FEATURES

200 MSPS Throughput Rate
3.3 V PECL Digital Input

65 dB SFDR @ 2 MHz A ${ }_{\text {out }}$, 200 MSPS/54 dB @ 40 MHz A out, 200 MSPS
Low Power: 305 mW
Fast Settling: 5 ns to $\mathbf{1 / 2}$ LSB
Low Glitch Energy: 6 pVs
Internal Reference
28-Lead SSOP Packaging

Digita Commun/cations Direct Digital Synthesis
Waveform Recpnstruction

GENERAL DESCRIPTION

The AD9732 is a 10 -bit, 200 MSPS, bipolar D/A converter that is optimized to provide high dynamic performance, yet offers lower power dissipation and a more economical price than previous high speed DAC solutions. The AD9732 was primarily designed for demanding communications systems applications where maximum spurious-free dynamic range (SFDR) is required at high throughput rates. The proliferation of digital communications into base station and high volume subscriber-end markets has created a demand for high performance bipolar DACs delivered at CMOS associated levels of power dissipation and cost. The AD9732 is the answer to that demand.
Optimized for direct digital synthesis (DDS) and digital modulator waveform reconstruction, the AD9732 provides $>50 \mathrm{~dB}$ of wideband harmonic suppression over the dc to 80 MHz analog output bandwidth. This signal bandwidth addresses the transmit

REV. A

[^0]AD9732-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS $\left(+V_{S}=+5 \mathrm{~V}\right.$, ENCODE $=125 \mathrm{MSPS}, \mathrm{R}_{\text {SEt }}=1.95 \mathrm{k} \Omega$ (for $\left.20 \mathrm{~mA} \mathrm{I}_{\text {OUT }}\right)$ unless otherwise noted)

EXPLANATION OF TEST LEVELS

Test Level

I 100% production tested.
II 100% production tested at $+25^{\circ} \mathrm{C}$ and sample tested at specified temperatures.
III Sample tested only.

IV Parameter is guaranteed by design and characterization testing.

V Parameter is a typical value only.
VI 100% production tested at $+25^{\circ} \mathrm{C}$; guaranteed by design and characterization testing for industrial temperature range.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD9732BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Small Outline (SSOP) AD9732/PCB	RS-28

ABSOLUTE MAXIMUM RATINGS*	
Analog Output	
+ $\mathrm{V}_{\text {S }}$	$+6 \mathrm{~V}$
Digital Inputs	. 7 V to $+\mathrm{V}_{\mathrm{S}}$
Analog Output Current	30 mA
Control Amplifier Input Voltage Ran	0 V to $+\mathrm{V}_{\mathrm{S}}$
Reference Input Voltage Range	0 V to $+\mathrm{V}_{\mathrm{S}}$
Internal Reference Output Current	$500 \mu \mathrm{~A}$
Control Amplifier Output Current	$\pm 2.5 \mathrm{~mA}$
Operating Temperature	C to $+85^{\circ} \mathrm{C}$
Storage Temperature	C to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+175^{\circ} \mathrm{C}$
Lead Temperature (10 sec) Soldering	$+300^{\circ} \mathrm{C}$
nent damage the device. This is a stress rating only; functional operation of the def fice at these or aty other conditions outside of those indicated in the operation	
pections of this specifination s not tmplied. Exp for extended peripds nay pffect device reltybil	maximum ratings

PIN CONFIGURATION

Pin Number

Figure 2. AarrowbdrasFDR (Clock $=200 \mathrm{MHz}$) vs. $A_{\text {Out }}$

Figure 3. Narrowband SFDR (Clock $=125 \mathrm{MHz}$) vs. $A_{\text {OUt }}$ Frequency

Figure 4. Wideband SFDR (200 MHz Clock) vs. $A_{\text {Out }}$

Figure 5. SFDR vs. Iout

Figure 6. SFDR vs. Clock for $f_{\text {CLK }} / A_{\text {Out }}=3.125$

Figure 7. Typical Differential Nonlinearity Performance (DNL)

Figure \&. 7 pic\& Integral Nonlinearity Performance (INL)

Figure 11. Wideband SFDR 20 MHz A out; $^{125 \mathrm{MHz} \text { Clock }}$

Figure 12. Wideband SFDR $40 \mathrm{MHz} A_{\text {out; }} 125 \mathrm{MHz}$ Clock

Figure 13. Wideband SFDR 40 MHz A out; 200 MHz Clock

Fighire 14. Widebarha SFDR- 65 MHz A OUt; 200 MHz Clock

Figure 15. Wideband SFDR $80 \mathrm{MHz} A_{\text {OUt; }} 200 \mathrm{MHz}$ Clock

Figure 16. Wideband Intermodulation Distortion F1 = $800 \mathrm{kHz} ;$ F2 = $900 \mathrm{kHz} ; 125 \mathrm{MHz}$ Clock; Span $=2 \mathrm{MHz}$

Figure 17. Wideband Intermodulation Distortion F1 = $800 \mathrm{kHz} ;$ F2 = $900 \mathrm{kHz} ; 125 \mathrm{MHz}$ Clock; Span $=62.5 \mathrm{MHz}$

APPLICATION NOTES THEORY OF OPERATION

The AD9732 high speed digital-to-analog converter utilizes most significant bit decoding and segmentation techniques to reduce glitch impulse and deliver high dynamic performance on lower power consumption than previous bipolar DAC technologies.
The design is based on four main subsections: the decode/driver circuits, the edge-triggered data register, the switch network and the control amplifier. An internal bandgap reference is included to allow operation of the device with minimum external support components.

Digital Inputs/Timing

The AD9732 has PECL high speed single-ended inputs for data inputs and clock. The switching threshold is +2.0 V .
In the-decode/driver section, the three MSBs are decoded to peven "thermome er code ines. An equalizing delay is included for the seyen least sionificant bjits and theclock signals. This delay minimizes dataskew and data setup-and hold times at the kegister inpyts. $\lll<$ the on board regiter is rsing-edgetriggeres and hoywab used to synch kenize data to the current sxitchss by applying a pulse with proper datandend-hdid times as shown in the timing diagram. Although the AD 732 is designed to provide isolation of the digital inputs to the analog output, sonecoupling of digital transitions is inevitable. Digital feedthrough can be minimized by forming a low-pass filter at the digital input by using a resistor in series with the capacitance of each digital input. This common high speed DAC application technique has the effect of isolating digital input noise from the analog output.

References

The internal bandgap reference, control amplifier and reference input are pinned out to provide maximum user flexibility in configuring the reference circuitry for the AD9732. When using the internal reference, REF OUT (Pin 25) should be connected to CONTROL AMP IN (Pin 26). CONTROL AMP OUT (Pin 24) should be connected to REF IN (Pin 23). A $0.1 \mu \mathrm{~F}$ ceramic capacitor connected from Pin 23 to GND improves settling time by decoupling switching noise from the current sink baseline. A reference current cell provides feedback to the control amplifier by sinking current through $\mathrm{R}_{\mathrm{SET}}$ (Pin 17).
Full-scale current is determined by CONTROL AMP IN and $\mathrm{R}_{\mathrm{SET}}$ according to the following equation:

$$
I_{O U T}(F S)=32\left(\left[C O N T R O L A M P ~ I N ~-~\left(+V_{S}\right)\right] / R_{S E T}\right)
$$

The internal reference is nominally -1.25 V (referenced to Analog $+V_{S}$), with a tolerance of $\pm 8 \%$ and typical drift over temperature of $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If greater accuracy or temperature stability is required, an external reference can be used. The AD589 reference features $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Two modes of multiplying operation are possible with the AD9732. Signals with bandwidths up to 2.5 MHz and input swings from 3.8 V to 4.4 V can be applied to the CONTROL AMP IN pin as shown in Figure 18. Because the control amplifier is internally compensated, the $0.1 \mu \mathrm{~F}$ capacitor discussed above can be reduced to maximize the multiplying bandwidth.

However, it should be noted that output settling time, for changes in the digital word, will be degraded.

Figure 18. Lower Frequency Multiplying Circuit
The REFERENCE IN pin can also be driven directly for wider bandwidth multiplying operation. The analog signal for this mode of operation must have a signal swing in the range of 0.95 V to 1.9 V . This can be implemented by capacitively couplifg ipto REFERENCE IN a signal with a dc bias of 1.9 V (IOUT $=22.5 \mathrm{~mA}$) to $0.95 \mathrm{~K}\left(\mathrm{I}_{\text {out }}=3 \mathrm{~mA}\right)$, as shown in Figure 19, or by dividing REFERENCE IN with a low impedance op amp

Figure 19. Wideband Multiplying Circuit

Analog Output

The switch network provides complementary current outputs $\mathrm{I}_{\text {Out }}$ and $\mathrm{I}_{\text {Outb. }}$. The design of the AD9732 is based on statistical current source matching, which provides a 10-bit linearity without trim. Current is steered to either $\mathrm{I}_{\text {OUT }}$ or $\mathrm{I}_{\text {OUTB }}$ in proportion to the digital input word. The sum of the two currents is always equal to the full-scale output current. The current can be converted to a voltage by resistive loading as shown in Figure 20 . Both $\mathrm{I}_{\text {OUT }}$ and $\mathrm{I}_{\text {OUTB }}$ should be equally loaded for best overall performance. The voltage that is developed is the product of the output current and the value of the load resistor.

EVALUATION BOARD

The performance characteristics of the AD9732 make it ideally suited for direct digital synthesis (DDS) and other waveform synthesis applications. The AD9732 evaluation board provides a platform for analyzing performance under optimum layout conditions. The AD9732 also provides a reference for high speed circuit board layout techniques.

Figure 20. Evaluation Board

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead SSOP

(RS-28)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

