National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

DS26C32AMQML

Quad Differential Line Receiver

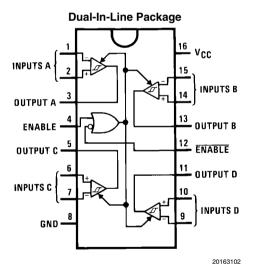
General Description

The DS26C32A is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS.

The DS26C32A has an input sensitivity of 200 mV over the common mode input voltage range of $\pm 7V$. The DS26C32A features internal pull-up and pull-down resistors which prevent output oscillation on unused channels.

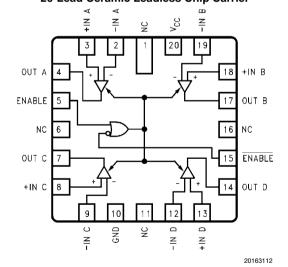
The DS26C32A provides an enable and disable function common to all four receivers, and features TRI-STATE ® outputs

with 6 mA source and sink capability. This product is pin compatible with the DS26LS32A and the AM26LS32.

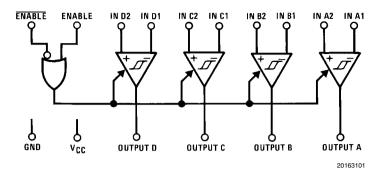

Features

- CMOS design for low power
- ±0.2V sensitivity over input common mode voltage range
- Input fail-safe circuitry.
- Inputs won't load line when V_{CC} = 0V
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for connection to system buses

Ordering Information


NS Part Number	SMD Part Number	NS Package Number	Package Description
DS26C32AME/883	5962-9164001M2A	E20A	20LD Leadless Chip Carrier
DS26C32AMJ/883	5962-9164001MEA	J16A	16LD Ceramic Dip
DS26C32AMW/883	5962-9164001MFA	W16A	16LD Ceramic Flatpack
DS26C32AMWG/883	5962-9164001MXA	WG16A	16LD Ceramic SOIC

Connection Diagrams


Top View See NS Package J16A, WG16A, or W16A

20-Lead Ceramic Leadless Chip Carrier

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Logic Diagram

Truth Table

ENABLE	ABLE ENABLE Input		Output
L	Н	Х	Z
All Other Combinations of Enable Inputs		$V_{ID} \ge V_{Th} (Max)$	Н
		V _{ID} ≤ V _{Th} (Min)	L
		Open	Н

Z = TRI-STATE

Absolute Maximum Ratings (Note 2, Note 1)

Supply Voltage (V_{CC}) 7V Common Mode Range (V_{CM}) $\pm 14V$ Differential Input Voltage (V_{Diff}) $\pm 14V$ Enable Input Voltage (V_{I}) 7V Storage Temperature Range (T_{Stg}) $-65^{\circ}C \le T_{A} \le +150^{\circ}C$ Lead Temperature (Soldering 4 sec.) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature Range (T _*)	-55	+125	°C

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at +1	
14	Settling time at	-55

DS26C32AM Electrical Characteristics

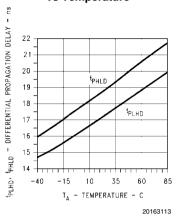
DC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{TH}	Minimum Differential Input Voltage	$V_{CC} = 5V$, $V_{O} = V_{OH}$ or V_{OL} , -7 < V_{CM} < +7		-200	+200	mV	1, 2, 3
R _I	Input Resistance	$V_{CC} = 5V$, -7 < V_{CM} < +7, One input AC Gnd		4.5	11	ΚΩ	1, 2, 3
I _I	Input Current	$V_{CC} = 5V$, $V_I = +10V$, Other Input = Gnd			+1.8	mA	1, 2, 3
		$V_{CC} = 5V$, $V_I = -10V$, Other Input = Gnd			-2.7	mA	1, 2, 3
V _{OH}	Logical "1" Output Voltage	$V_{CC} = 4.5V, V_{Diff} = +1V,$ $I_{O} = -6.0mA$		3.8		V	1, 2, 3
V _{OL}	Logical "0" Output Voltage	$V_{CC} = 5.5V$, $V_{CC} = Max$, $V_{Diff} = -1V$, $I_{O} = 6.0mA$			0.3	V	1, 2, 3
V _{IH}	Minimum Enable High Level Voltage		(Note 3)	2.0		V	1, 2, 3
V _{IL}	Maximum Enable Low Level Voltage		(Note 3)		0.8	V	1, 2, 3
I _{OZ}	Maximum TRI-STATE Output Leakage Current	$V_O = V_{CC}$ or Gnd, Enable = V_{IL} , Enable = V_{IH}			±5.0	μΑ	1, 2, 3
I _I	Maximum Enable Input Current	V _I = V _{CC} or Gnd			±1.0	μΑ	1, 2, 3
I _{cc}	Quiescent Power Supply Current	$V_{Diff} = +1V, V_{CC} = 5.5V$			25	mA	1, 2, 3

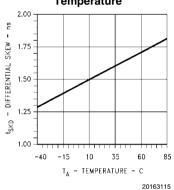
AC Parameters - Propagation Delay Time

The following conditions apply, unless otherwise specified. $V_{CC} = 5V \pm 10\%$, $C_{CL} = 50 pF$, $V_{Diff} = 2.5 V_{CC} = 50 pF$

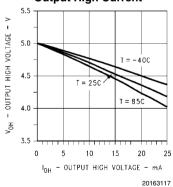
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
t _{PLH}	Input to Output Prop Delay	V _{CM} = 0V			35	ns	9, 10, 11
t _{PHL}	Input to Output Prop Delay	$V_{CM} = 0V$			35	ns	9, 10, 11
t _{Rise}	Output Rise Time	$V_{CM} = 0V$			9	ns	9, 10, 11
t _{Fall}	Output Fall Time	$V_{CM} = 0V$			9	ns	9, 10, 11
t _{PLZ}	Output Disable Time	$R_L = 1000\Omega$			29	ns	9, 10, 11
t _{PZL}	Output Enable Time	$R_L = 1000\Omega$			29	ns	9, 10, 11
t _{PHZ}	Output Disable Time	$R_L = 1000\Omega$			29	ns	9, 10, 11
t _{PZH}	Output Enable Time	$R_L = 1000\Omega$			29	ns	9, 10, 11

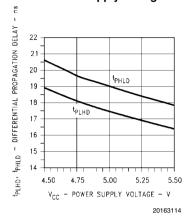

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

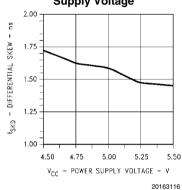
Note 2: Unless otherwise specified, all voltages are referenced to ground.

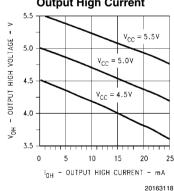

Note 3: Parameter tested Go-No-Go only.

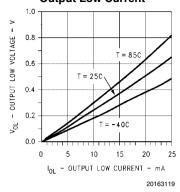
Typical Performance Characteristics

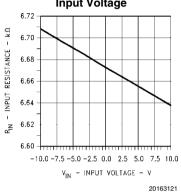

Differential Propagation Delay vs Temperature

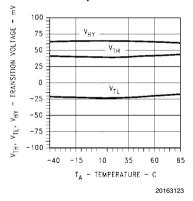

Differential Skew vs Temperature

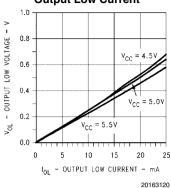

Output High Voltage vs Output High Current

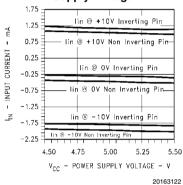

Differential Propagation Delay vs Power Supply Voltage

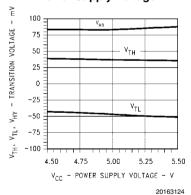

Differential Skew vs Power Supply Voltage

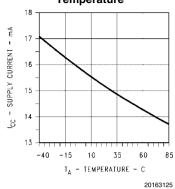

Output High Voltage vs Output High Current

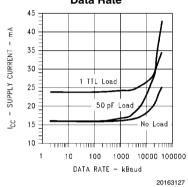

Output Low Voltage vs Output Low Current

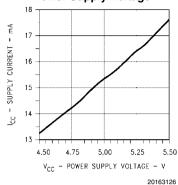

Input Resistance vs Input Voltage

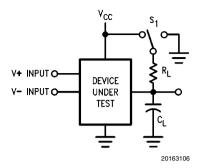

Hysteresis & Differential Transition Voltage vs Temperature


Output Low Voltage vs Output Low Current


Input Current vs Power Supply Voltage


Hysteresis & Differential Transition Voltage vs Power Supply Voltage


Supply Current vs Temperature


Supply Current vs Data Rate

Disabled Supply Current vs Power Supply Voltage

AC Test Circuit and Switching Time Waveforms

 $\mathbf{C}_{\mathbf{L}}$ includes load and test jig capacitance.

 $S_1 = V_{CC}$ for $_{tPZL}$, and t_{PLZ} measurements.

 $S_1 = Gnd \text{ for } t_{PZH}, \text{ and } t_{PHZ} \text{ measurements.}$

FIGURE 1. Test Circuit for TRI-STATE Output Tests

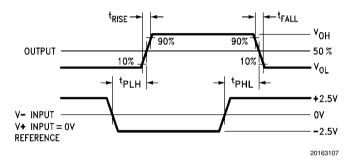


FIGURE 2. Propagation Delay

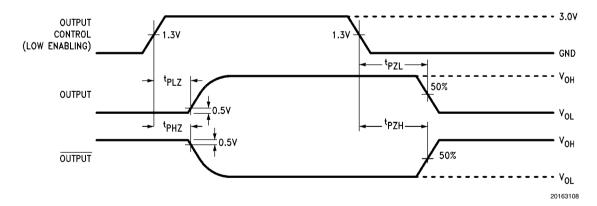
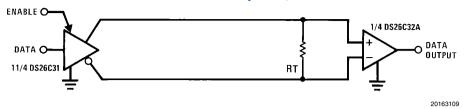
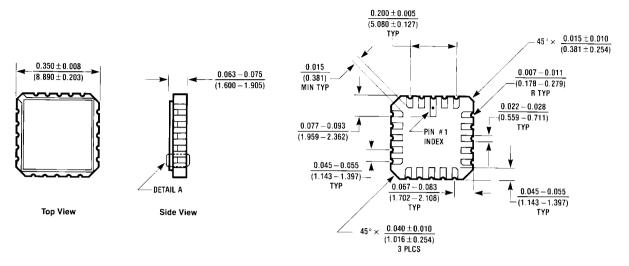
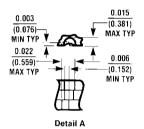



FIGURE 3. TRI-STATE®Output Enable and Disable Waveforms

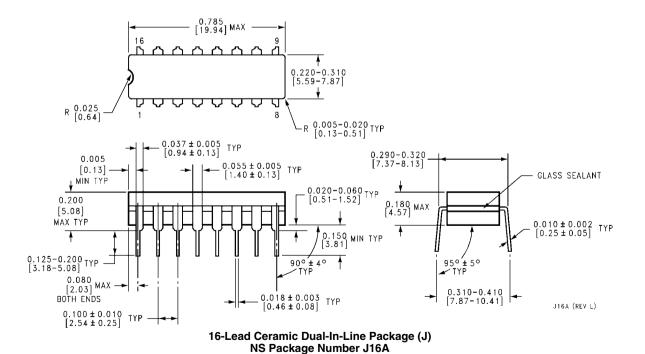
Typical Applications


Two-Wire Balanced Systems, RS-422

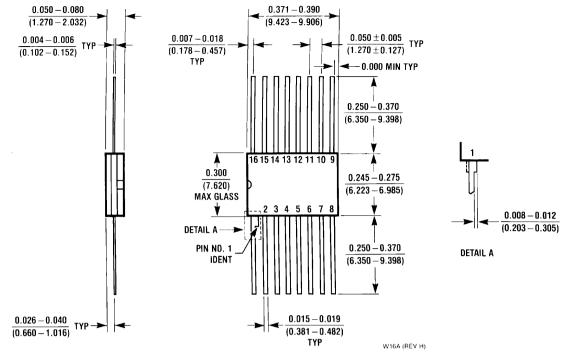

Revision History Section

Released	Revision	Section	Changes
10/26/2010	A	· '	MDS data sheets converted into one Corp. data sheet format. MNDS26C32AM-X Rev 0B0 will be archived.

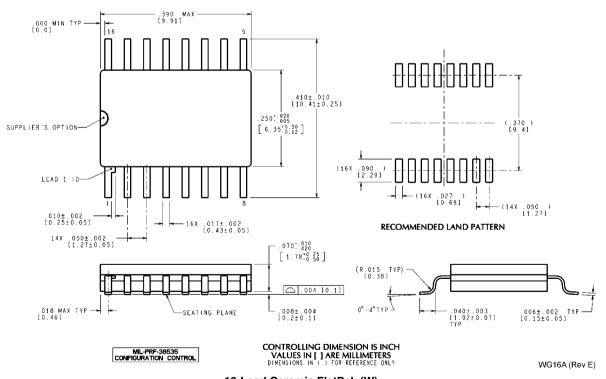
Physical Dimensions inches (millimeters) unless otherwise noted



Bottom View



E20A (REVID:


20-Lead Ceramic Leadless Chip Carrier (E) NS Package Number E20A

11

16-Lead Ceramic FlatPak (W) NS Package Number W16A

16-Lead Ceramic FlatPak (W) NS Package Number WG16A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com