FEATURES

12-Bit Resolution

24-Pin "Skinny DIP" Package
Conversion Time: 500 ns max—AD671J/K/S-500
750 ns max-AD671J/K/S-750
Low Power: 475 mW
Unipolar (0 V to $\mathbf{+ 5} \mathrm{V}, \mathbf{0} \mathrm{V}$ to +10 V) and Bipolar Input Ranges ($\pm 5 \mathrm{~V}$)
 offering conversion rates of up to 2 MHz (500 ns conversion time). The combination of a merged high speed bipolar/CMOS process and a novel architecture results in a combination of speed and power consumption far superior to previously available hybrid implementations. Additionally, the greater reliability of monolithic construction offers improved system reliability and lower costs than hybrid designs.
The AD671 uses a subranging flash conversion technique, with digital error correction for possible errors introduced in the first part of the conversion cycle. An on-chip timing generator provides strobe pulses for each of the four internal flash cycles and assures adequate settling time for the interflash residue amplifier. A single ENCODE pulse is used to control the converter.
The performance of the AD671 is made possible by using high speed, low noise bipolar circuitry in the linear sections and low power CMOS for the logic sections. Analog Devices' ABCMOS-1 process provides both high speed bipolar and 2-micron CMOS devices on a single chip. Laser trimmed thin-film resistors are used to provide accuracy and temperature stability.
The AD671 is available in two conversion speeds and performance grades. The AD671J and K grades are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. The AD671S grades are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. All grades are available in a 0.300 inch wide 24 -pin ceramic DIP. The J and K grades are also available in a 24 -pin plastic DIP.

FUNCTIONAL BLOCK DIAGRAM

1. The AD671 фffersa single chip 2 MHz anatog-to-digital conversion flunction in a pace saveng 24 -pirh $\square \mathrm{IP}$.
2 . Input signal ranges are 0 V to +5 N apd 0 V t $0+\sqrt{0 \mathrm{~V} \text { uniped- }}$ lar, and -5.5 V to +5 K bipolar, selected by pip strapping. Input resistance is $1.5 \mathrm{k} \Omega$. Power supplies are $+5 \mathrm{Land}-5 \mathrm{~V}$, and typical power consumption is less than 500 mW .
2. The external +5 V reference can be choser to suit the accuracy and temperature drift requirements of the applidation.
3. Output data is available in unipolar, bipolar offset or bipolar twos complement binary format.
4. An OUT OF RANGE output bit indicates when the input signal is beyond the AD671's input range.
5. The AD671 is available in versions compliant with the MIL-STD-883. Refer to the Analog Devices Military Products Databook or current AD671/883B data sheet for detailed specifications.

REV. B

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

NOTES

${ }^{1}$ Adjustable to zero with external potentiometers. See Offset/Gain Calibration section for additional information.
${ }^{2}$ Full-scale range (FSR) is 5 V for the 0 V to 5 V range and 10 V for the 0 V to 10 V and -5 V to +5 V ranges.
${ }^{3} 25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ and $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$.
${ }^{4}$ Change in gain error as a function of the dc supply voltage.
${ }^{5}$ Tested under static conditions. See Figure 12 for typical curves of I LOGIC vs. Conversion Rate and Output Loading.
Specifications subject to change without notice.
Specifications shown in boldface are tested on all devices at final electrical test with worst case supply voltages at $0,+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested.

NOTES

${ }^{1}$ Adjustable to zero with external potentiometers. See Offset/Gain Calibration section for additional information.
${ }^{2}$ Full-scale range (FSR) is 5 V for the 0 V to 5 V range and 10 V for the 0 V to 10 V and -5 V to +5 V ranges.
${ }^{3} 25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ and $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$.
${ }^{4}$ Change in gain error as a function of the dc supply voltage.
${ }^{5}$ Tested under static conditions. See Figure 12 for typical curves of $\mathrm{I}_{\text {LOGIC }}$ vs. Conversion Rate and Output Loading.
Specifications subject to change without notice.
Specifications shown in boldface are tested on all devices at final electrical test with worst case supply voltages at $0,+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested.

AD671-SPECIFICATIONS

DIGITAL SPECIFICATIONS (For all grades $T_{\text {MIN }}$ to $T_{\text {MAX }}$, with $V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{\text {LOGIC }}=+5 \mathrm{~V} \pm 10 \%, V_{E E}=-5 \mathrm{~V}$
(1)

Parameter	Symbol	Min	Typ	Max	Units
LOGIC INPUT					
High Level Input Voltage	$\mathrm{V}_{\text {IH }}$	+2.0			V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$			+0.8	V
High Level Input Current ($\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LOGIC }}$)	I_{IH}	-10		+10	$\mu \mathrm{A}$
Low Level Input Current ($\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$)	$\mathrm{I}_{\text {IL }}$	-10		+10	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		5		pF
LOGIC OUTPUTS					
High Level Output Voltage ($\mathrm{I}_{\mathrm{OH}}=0.5 \mathrm{~mA}$)	V_{OH}	+2.4			V
Low Level Output Voltage ($\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$)	V_{OL}			+0.4	V
Output Capacitance	Cout		5		pF

Spefifications show in boldface are tested on all devices at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max speciifytions ary gua antee $\sqrt{ }$, attrong only those shown in boldface are tested.
specifications subject oo ch hnge riathout nofice.

Conversion Time
(AD671-500)
(AD671-750)
ENCODE Pulse Width High (AD671-500)
(AD671-750)
ENCODE Pulse Width Low
DAV Pulse Width
(AD671-500)
(AD671-750)
ENCODE Falling Edge Delay
Start New Conversion Delay
Data and OTR Delay from DAV Falling Edge
Data and OTR Valid before DAV Rising Edge
NOTES
${ }^{1} \mathrm{t}_{\mathrm{DD}}$ is measured from when the falling edge of DAV crosses 0.8 V to when the output crosses 0.4 V or 2.4 V with a 25 pF load capacitor on each output pin.
${ }^{2} \mathrm{t}_{\text {ss }}$ is measured from when the outputs cross 0.4 V or 2.4 V to when the rising edge of DAV crosses 2.4 V with a 25 pF load capacitor on each output pin.

Figure 1. AD671 Timing Diagrams

AD671 PIN DESCRIPTION

CONNECTION DIAGRAM

 PINOUT

TYPE:
AI = Analog Input
DI $=$ Digital Input
DO = Digital Output
P = Power

DEFINITIONS OF SPECIFICATIONS

INTEGRAL NONLINEARITY (INL)

Integral nonlinearity refers to the deviation of each individual code from a line drawn from "zero" through "full scale." The point used as "zero" occurs $1 / 2 \mathrm{LSB}$ (1.22 mV for a 10 V span) before the first code transition (all zeros to only the LSB on).
"Full scale" is defined as a level $11 / 2$ LSB beyond the last code transition (to all ones). The deviation is measured from the low side transition of each particular code to the true straight line.

DIFFERENTIAL NONLINEARITY (DNL, NO MISSING CODES)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Thus every code inust have a finite width. Guaranteed no missing codes to 10-bitresolution ipdicates that all 1024 codes represented by Bits $1-10 \mathrm{mys}$ b \downarrow presentozer all operating ranges. Guaranteed no missing codes to 1 -os 12 -pit resolution indicates that all 2048 and 4096 codes respectiy ely, must be pesent over all op-

UNIPOLAR @FFSET
The first transitionshould occur at a level $1 / 2$ L $\$ B$ above analdg common. Unipolar offset is defined as the deynat on of the actual from that point. This offset can adiusted as discussed later. The unipolar offset temperature coefficient specifies the maximum change of the transition point over temperature, with or without external adjustments.

BIPOLAR ZERO

In the bipolar mode the major carry transition (0111 11111111 to 100000000000) should occur for an analog value $1 / 2$ LSB below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

GAIN ERROR

The last transition (from 111111111110 to 11111111 1111) should occur for an analog value $11 / 2$ LSB below the nominal full scale (9.9963 volts for 10.000 volts full scale). The gain error is the deviation of the actual level at the last transition from the ideal level. The gain error can be adjusted to zero as shown in Figures 7, 8 and 9.

TEMPERATURE COEFFICIENTS

The temperature coefficients for unipolar offset, bipolar zero and gain error specify the maximum change from the initial $\left(+25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$.

POWER SUPPLY REJECTION

The only effect of power supply error on the performance of the device will be a small change in gain. The specifications show the maximum full-scale change from the initial value with the supplies at the various limits.

SIGNAL-TO-NOISE AND DISTORTION (S/N+D) RATIO $\mathrm{S} / \mathrm{N}+\mathrm{D}$ is the ratio of the rms value of the measured input signal to the mm sum of all other spectral components, including harmonids but excludirg de. The value for $\mathrm{S} / \mathrm{N}+\mathrm{D}$ is expressed in decibels.
 ponents to the rms value of the measured input signat and is expressed as a percentage or in decibels.

PEAK SPURIOUS OR PEAK HARMONIC COMPONENT

The peak spurious or peak harmonic component is the largest spectral component excluding the input signal and dc. This value is expressed in decibels relative to the rms value of a fullscale input signal.

Theory of Operation

The AD671 uses a successive subranging architecture. The analog to digital conversion takes place in four independent steps or flashes. The analog input signal is subranged to an intermediate residue voltage for the final 12-bit result by utilizing multiple flashes with subtraction DACs (see the AD671 functional block diagram).
The AD671 can be configured to operate with unipolar (0 V to $+5 \mathrm{~V}, 0 \mathrm{~V}$ to +10 V) or bipolar ($\pm 5 \mathrm{~V}$) inputs by connecting AIN (Pin 20), REFIN (Pin 19) and BPO/UPO (Pin 21) as shown in Figure 2.
The AD671 conversion cycle begins by simply providing an active HIGH pulse on the ENCODE pin (Pin 16). The rising edge of the ENCODE pulse starts the conversion. The falling edge of the ENCODE pulse is specified to operate within a window of time: less than 30 ns after the rising edge of ENCODE
(AD671-500) and less than 50 ns after the falling edge of ENCODE (AD671-750) or after the falling edge of DAV. The time window prevents digitally coupled noise from being introduced during the final stages of conversion. An internal timing generator circuit accurately controls all internal timing.

Figure 2. Input Range Connections

Upon receipt of an ENCODE command, the first 3-bit flash converts the analog input voltage. The 3-bit result is passed to a correction logic register and a segmented current output DAC. The DAC output is connected through a resistor (within the Range/Span Select Block) to AIN. A residue voltage is created by subtracting the DAC output from AIN, which is less than one eighth of the full-scale analog input. The second flash has an input range that is configured with one bit of overlap with the previous DAC. The overlap allows for errors during the flash conversion. The first residue voltage is connected to the second 3-bit flash and to the noninverting input of a high speed, differential, gain-of-four amplifier. The second flash result is passed to the correction logic register and to the second segmented current output DAC. The output of the second DAC is connected to the inverting input of the differential amplifier. The differentia amplifier ousput is connected to a two step backend 8-bit fash This 8-фit flash ¢onsists of coarse and fine flash converters. The result of he poarse 4 bit flash converter, also configured to overlap orle bit oLDAC2, if connected to the correction legic register and selects one of 16 resiftor from which the fine 4-bit flash will establish/its span opltage The fine 4 -bit flash is connected directly to theoutput latches. The AD671 will flag an out-of-lange codition when the nput voltage exceeds the analog input rangd OTR (Pin/14) is \&ctive HIGH when an out of range high or low condition exists. Bits $1-12$ are HIGH when the analog input voltage is greater ban the selected input range and LOW when the analog input is less than the selected input range.

APPLYING THE AD671

DRIVING THE AD671 ANALOG INPUT

The AD671 uses a very high speed current output DAC to subtract a known voltage from the analog input. This results in very fast steps of current at the analog input. It is important to recognize that the signal source driving the analog input of the AD671 must be capable of maintaining the input voltage under dynamically-changing load conditions. When the AD671 starts its conversion cycle, the subtraction DAC will sink up to 5 mA (see Figure 3) from the source driving the analog input. The source must respond to this current step by settling the input voltage back to a fraction of an LSB before the AD671 makes its final 12-bit decision.

Figure 3. Driving the Analog Input
Unlike successive approximation A / Ds, where the input voltage must settle to a fraction of a 12-bit LSB before each successive bit decision is made, the AD671 requires the analog input voltage settle to within 12 bits before the third flash conversion, approximately 200 ns . This "free" 200 ns is useful in applications requiring a sample-and-hold amplifier (SHA), overlapping the SHA's hold mode settling time within the 200 ns window will increase total system throughput. See the "Discrete Sample-and-Hold" section for a high speed SHA application.

INPUT BUFFER AMPLIFIER

The closed-loop output impedance of an op amp is equal to the open loop output impedance (usually a few hundred ohms) divided by the loop gain at the frequency of interest. It is often assumed that loop gain of a follower-connected op amp is sufficiently high to reduce the closed-loop output impedance to a negligibly small value, particularly if the input signal is low frequency. At higher frequencies the open-loop gain is lower, increasing the output impedance which decreases the instantaneous analog input voltage and produces an error.
The recommended wideband, fast settling input amplifiers for use with the AD671 are the AD841, AD843, AD845 or the AD847. The AD841 is unity gain stable and recommended as a follower connected op amp. The AD843 and AD845 FET inputs make them ideal for high speed sample-and-hold amplifiers and the AD847 can be used as a low power, high speed buffer. Figure 4 shows the AD841 driving the AD671. As shown in the figure the analog input voltage should be produced with respect to the ACOM pin.

Figure 4. Input Buffer Amplifier

REFERENCE INPUT

The AD671 uses a standard +5 volt reference. The initial accuracy and temperature stability of the reference can be selected to meet specific system requirements. Like the analog input, fast switching input-dependent currents are modulated at the reference input pin (REF IN-Pin 19). However, unlike the analog input the reference input is held at a constant +5 volts with the use of capacitor. The recommended reference is the AD586, a +5 V precision reference with an output buffer amplifier. Figure 5 shows the AD671 configured in the $\pm 5 \mathrm{~V}$ input range. The $6.8 \mu \mathrm{~F}$ capacitor maintains a constant +5 volts under the dynamically changing load conditions. An optional $1 \mu \mathrm{~F}$ noise reduction capacitor can be connected to the AD586, further reducing broadband output noise. To minimize ground voltage drops the AD586's ground pin should be tied as close as possible to the AD671's ACOM pin. See Figures 20, 21 and 22 for PCB layout recommendations.

ment of maloo and digital gro und durrents in a syslem. The AD671 is designed to minimize the current flowing from ACOM (Pin 22) by directing the maiority of the curdent from $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V}-\mathrm{Pin} 23)$ to $\mathrm{V}_{\mathrm{EE}}(-5 \mathrm{~V}-\operatorname{in} 24)$. Mipimizing analog ground currents hence reduces the potential for lagge found voltage drops. This can be especially true in systemsthat do no utilize ground planes or wide ground runs. ACOM is also configured to be code independent, therefore reducing input dependent analog ground voltage drops and errors. The input current supplied by the external reference (REFIN-Pin 19) and the majority of the full-scale input signal (AIN-Pin 20) are also directed to $\mathrm{V}_{\text {EE }}$. Also critical in any high speed digital design are the use of proper digital grounding techniques to avoid potential CMOS "ground bounce." Figure 6 is provided to assist in the proper layout, grounding and decoupling techniques.
Table I is a list of grounding and decoupling guidelines that should be reviewed before laying out a printed circuit board.

*GROUND PLANE RECOMMENDED
Figure 6. AD671 Grounding and Decoupling

Table I. Grounding and Decoupling Guidelines

Power Supply Decoupling	Comment
Capacitor Values	$0.1 \mu \mathrm{~F}$ (Ceramic) and $10 \mu \mathrm{~F}$ (Tantalum). (Surface Mount Chip Capacitors Recom- mended to Reduce Lead Inductance).
Capacitor Locations	Directly at Positive and Negative Supply Pins to Respective Ground Plane.
Grounding	Ground Plane or Wide Ground Return Connected to the Analog Power Supply.
Analog Ground	Ground Plane or Wide Ground Return Connected to the Digital Power Supply.
Digital Ground	
Analog and Digital Ground	Connected Together Once at the AD671.

UNIPOLAR (0 V TO +10 V) CALIBRATION

The AD671 is fagtory trimmed to minimize offset, gain and lindarit errors. In somelications the offset and gain errors of the AD671 need to be externally diusted to zero. This is accorhplished by rimming the voltage dt BPOUPO (Pin 21) and REFIN ($\operatorname{Pin} 1 \phi$). Th those applications the AD5 $\$ 8$, sthigh preqisionpin progyammable voltage refe ence, is an jdeal choice. The AD588 inclutes referency cell and three additional amplifiers which can be configured provide of set and gair trims for the AD671. The circuit in Figure 7 is reoommended for calibrating offset and gain errors of the AD671 when configured in thy 0 V to +10 V input range.

Figure 7. Unipolar (0 V to +10 V) Calibration
The AD671 is intended to have a nominal $1 / 2$ LSB offset so that the exact analog input for a given code will be in the middle of that code (halfway between the transitions to the codes above it and below it). Thus, the first transition (from 000000000000 to 000000000001) will occur for an input level of $+1 / 2$ LSB (1.22 mV for 10 V range). If the offset trim resistor R 2 is used,
it should be trimmed as above, although a different offset can be set for a particular system requirement. This circuit will give approximately $\pm 50 \mathrm{mV}$ of offset trim range.
The gain trim is done by applying a signal $11 / 2$ LSBs below the nominal full scale (9.9963 for a 10 V range). Trim R1 to give the last transition (1111 11111110 to 111111111111).

UNIPOLAR (0 V TO +5 V) CALIBRATION

The connections for the 0 V to +5 V input range calibration is shown in Figure 8. The AD586, a +5 V precision voltage reference, is an excellent choice for this mode of operation because of its performance, stability and optional fine trim. The AD845 (16 MHz , low power, low cost op amp) is used to maintain the +5 volts under the dynamically changing load conditions of the

Figure 8. Unipolar (0 V to +5 V) Calibration
The AD671 offset error must be trimmed within the analog input path, either directly in front of the AD671 or within the signal conditioning chain, eliminating offset errors induced by the signal conditioning circuitry. Figure 8 shows an example of how the offset error can be trimmed in front of the AD671. The AD 586 is configured in the optional fine trim mode to provide $+6 \% /-2 \%(+240 \mathrm{LSBs} /-80 \mathrm{LSBs})$ of gain trim. The procedure for trimming the offset and gain errors is similar to that used for the unipolar 10 V range with the analog input values set to onehalf the 10 V range values.

BIPOLAR ($\pm 5 \mathrm{~V}$) CALIBRATION

The connections for the bipolar input range is shown in Figure 9 . The AD588 is configured to provide dual +5 V outputs. Providing a +5 V reference voltage for the AD 671 gain trim and the $+5 \mathrm{~V} \mathrm{BPO} / \mathrm{UPO}$ input for the bipolar offset trim.

Figure 9. Bipolar (± 5 V) Calibration

Bipolar calibration is similar to unipolar calibration. First, a signal $1 / 2$ LSB above negative full scale $(-4.9988 \mathrm{~V})$ is applied and R1 is trimmed to give the first transition (0000 00000000 to 000000000001). Then a signal $11 / 2$ LSB below positive full scale (+4.9963) is applied, and R2 is trimmed to give the last transition (1111 11111110 to 11111111 1111).

OUTPUT LATCHES

Figure 10 shows the AD671 connected to the 74 HC 574 Octal D-type edge triggered latches with 3 -state outputs. The latch can drive highly capacitive loads (i.e., bus lines, I/O ports) while maintaining the data signal integrity. The maximum set-up and hold times of the 574 type latch must be less than 20 ns (t_{DD} and t_{SS} minimum). To satisfy the requirements of the 574 type latch the recommended logic families are HC, S, AS, ALS, F or BCT. New data from the AD671 is latched on the rising edge of the DAV (Pin 24) output pulse. Previous data can be latched by inverting the DAV output with a 7404 type inverter. See Figures 20, 21 and 22 for PCB layout recommendations.

Figure 10. AD671 to Output Latches

OUT OF RANGE

An Out of Range condition exists when the analog input voltage is beyond the input range (0 V to $+5 \mathrm{~V}, 0 \mathrm{~V}$ to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$) of the converter. OTR (Pin 14) is set low when the analog input voltage is within the analog input range. OTR is set HIGH and will remain HIGH when the analog input voltage exceeds the input range by typically $1 / 2 \mathrm{LSB}$ (OTR transition is tested to ± 6 LSBs of accuracy) from the center of the \pm full-scale output codes. OTR will remain HIGH until the analog input is within the input range and another conversion is completed. By logical ANDing OTR with the MSB and its complement overrange high or underrange low conditions can be detected. Table II is a truth table for the over/under range circuit in Figure 11. Systems requiring programmable gain conditioning prior to the AD671 can immediately detect an out of range condition, thus eliminating gain selection iterations.

Table II. Out of Range Truth Table

OTR	MSB	Analog Input Is
0	0	In Range
0	1	In Range
1	0	Underrange
1	1	Overrange

Figure 11. Overrange or Underrange Logic

OUTPUT DATA FORMAT

The AD671 provides both MSB and $\overline{\text { MSB }}$ outputs, delivering data in positive true straight binary for unipolar input ranges and positive true offset binary or twos complement for bipolar
input ranges. Straight binary coding is used for systems that accept positive-only signals. If straight binary coding is used with bipolar input signals a 0 V input would result in a binary output of 2048 . The application software would have to subtract 2048 to determine the true input voltage. Most processors typically perform math on signed integers and assume data is in that format. Twos complement format minimizes software overhead which is especially important in high speed data transfers, such as a DMA operation. The CPU is not bogged down performing data conversion steps, hence increasing the total system throughput.

NOTES
${ }^{1}$ Voltages listed are with offset and gain errors adjusted to zero.
${ }^{2}$ Typical performance.
I Logic vs. CONVERSION RATE
Figure 12 shows the typical logic supply current vs. conversion rate for various capacitive loads on the digital outputs.

Figure 12. $I_{\text {LOGIC }}$ vs. Conversion Rate for Various Capacitive Loads on the Digital Outputs

HIGH PERFORMANCE SAMPLE-AND-HOLD AMPLIFIER (SHA)

In order to take full advantage of the AD671's high speed capabilities, a sample-and-hold amplifier (SHA) with fast acquisition capabilities and rigid accuracy requirements is essential. One possibility is a hybrid SHA such as the HTC-0300A, but often a cost effective alternative like the one shown in Figure 13 may be a better solution. This discrete SHA requires very few components and is able to acquire signals to 0.01% accuracy in less than 350 nanoseconds. Combined with the AD671, signals with bandwidths up to 500 kHz can be converted with 12-bit accuracy.

Figure 13. Discrete High Speed Sample-and-Hold Amplifier

CIRCUIT DESCRIPTION

The discrete SHA shown in Figure 13 is a closed-loop, noninverting architecture which accepts 5 V p-p inputs. The overall gain of the SHA is +2 in order to accommodate the 10 V input span of the AD671. The AD841, with a 0.01% settling time of 110 ns , is the suggested input buffer to the SHA. The circuit also employs a SD5001 which contains four ultrahigh speed DMOS switches (Q1-Q4). The high CMRR, low input offset current, and fast settling time of the AD845 op amp are all critical features necessary for optimal performance of the discrete SHA.
In sample mode, Q1 and Q3 of the SD5001 are closed (Q2 and Q4 are open). C28 is charged to the input voltage level at a rate primarily determined by the time constant, R9•C28. Simultaneously, C29 is connected to ground through a 250 ohm resistor. If C28 is equal to C29, charge injection from Q 1 will be approximately equal to charge injection from Q3 based on the symmetry of the circuit and the inherent matching of the switch capacitances. The resultant pedestal errors appear as a commonmode signal to the AD845. VR2, R13, R14, and C34 may be included if further reduction of pedestal error is required.
In hold mode, Q2 and Q4 are closed (Q1 and Q3 are open) to reduce feedthrough. The input signal is attenuated -78 dB relative to the input signal at frequencies up to 500 kHz . The AD845 buffers the voltage on C28 and also provides the wideband, low-impedance output necessary to drive the input of the AD671.
Droop, which occurs as a result of leakage currents, will appear on C28 and will similarly appear on C29. Like pedestal errors, droop appears as a common-mode signal to the AD845 and is greatly reduced by the differential nature of the circuit. Voltage droop is typically $5 \mu \mathrm{~V} / \mu \mathrm{s}$.

CROSS COUPLED LATCH

As noted in the Theory of Operation, the ENCODE pulse is specified to operate within a window of time. The circuit in Figure 14 can be used to generate a valid ENCODE pulse if a clock pulse width of greater than 30 ns is available.

Figure 14. Cross Coupled Latch

TIMING DESCRIPTION

Figure 15 shows the timing requirements for the discrete SHA. The complementary S/H inputs are HCMOS-compatible although larger gate voltages will improve performance by lowerin the on pesistances of the DMOS switches. It should be noted that a conyersion is stapted before the SHA has settled to 0.01% ac\&urncy. The discrete SHA takes advantage of the fact that the ap6 11 does not require $\sqrt{12-b}$ ad arate imput until it is 150 ns Into its donversion cycle. See Figures 21,22 and 23 fo PCB

Figure 15. AD671 to Discrete SHA Timing Diagram

DYNAMIC PERFORMANCE

In most sampling applications the dynamic performance of the system is limited by the performance of the SHA. The SHA's dynamic performance can be selected to meet the system sampling requirements. Figures 16 and 17 are typical FFT plots using the discrete SHA in Figure 13.

Figure 16. Typical FFT Plot of AD671 and Discrete SHA $F_{I N}=100 \mathrm{kHz}$

Figure 17. Typical FFT Plot of AD671 and Discrete SHA $F_{\text {IN }}=500 \mathrm{kHz}$

MULTICHANNY EL DATA ACQUISITION SYSTEM
The AD6 84, a quad figh speen sample-and-hold amplifier is ideally syited for multichannel data acquisitio applications.
Figure 18 shows a typical date acquistion dircuit using the AD684 (SHA), ADG 201 HS (Multiplexer), AD588 (Reference) and the AD671. The AD684 is contigured to simpitaneously sample four anatog inputs. Each held analog in put voltage can be selected by the multiplexer and boxfered by the AD841. The AD671 is connected in the bipolar put range $(\pm 5$

DYNAMIC CHARACTERISTICS

(@) $+25^{\circ} \mathrm{C}$, tested using the discrete SHA in Figure 15 with $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$,
$\left.\mathrm{V}_{\text {LOGIC }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MSPS}\right)^{1}$

Model	AD671JD-500	
	Typ	Units
Effective Number of Bits (ENOB)		
$\mathrm{F}_{\mathrm{IN}}=100 \mathrm{kHz}$	11.3	Bits
$\mathrm{F}_{\mathrm{IN}}=490 \mathrm{kHz}$	11.2	Bits
Signal-to-Noise and Distortion (S/N+D) Ratio		
$\mathrm{F}_{\mathrm{IN}}=100 \mathrm{kHz}$	70	dB
$\mathrm{~F}_{\mathrm{IN}}=490 \mathrm{kHz}$	68	dB
Total Harmonic Distortion (THD)		
$\mathrm{F}_{\mathrm{IN}}=100 \mathrm{kHz}$	-80	dB
$\mathrm{~F}_{\mathrm{IN}}=490 \mathrm{kHz}$	-75	dB
Peak Spurious (dc to 490 kHz$)$	-79	dB
Peak Harmonic Component (dc to 490 kHz$)$	-76	dB

${ }_{\mathrm{f}_{\mathrm{I}}}^{\mathrm{NO}} /$ amplitude $=-0.2 \mathrm{~dB} @ 100 \mathrm{kHz}$ and $-0.9 \mathrm{~dB} @ 490 \mathrm{kHz}$, bipolar mode

Figure 18. Data Acquisition System Using the AD684 and the AD671

AD671

AD671 TO ADSP-2100A INTERFACE
Figure 19 demonstrates the AD671 to ADSP-2100A interface. The 2100 A with a clock frequency of 12.5 MHz can execute an instruction in one 80 ns cycle. The AD671 is configured to perform continuous time sampling. The DAV output of the AD671 is asserted at the end of each conversion. DAV can be used to latch the conversion result into the two 574 octal D-latches. The falling edge of the sampling clock is used to generate an interrupt (IRQ3) for the processor. Upon interrupt, the ADSP2100A starts a data memory read by providing an address on the DMA bus. The decoded address generates OE for the latches and the processor reads their output over the DMA bus. The conversion result is read within a single processor cycle.

Figure 19. AD671 to ADSP-2100A Interface

AD/ 11 TO ABSP-2101/ADSP-2102 INTERFACE
Figure 20 is idendical to the 2100A interface except the samplinoclock is used to generate an ipterrupt (IRQ2) for the processor. Upon interrupt the ADSP-2 101 y starts a data memory fead by providing an addresson the Address (A) bus. The decode address generates $\overline{O E}$ for the $\mathrm{D}-1$ latchss and the processor reads theirontput ϕ ver the Daa (P) bus. Reading the donversion result is thus bompleted withln (sitigle pryces or cycy.

Figure 21. PCB Silkscreen and Component Placement Diagram for Figures 5, 10 and 13

Figure 23. PCB Component Side Layout for Figures 5, 10 and 13

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

24-Pin Plastic DIP (Suffix N)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

