	9348 12-Input Parity Checker/Generator General Description The 9348 is a 12 -input parity checker/generator generating odd and even parity outputs. It can be used in high speed error detection applications.
	Connection Diagram Dual-In-Line Package Logic Symbol TL/F/9795-1 Order Number 9348DMQB or 9348FMQB See NS Package Number J16A or W16A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage 5.5 V
Operating Free Air Temperature Range
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	9348		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-0.8	mA
I_{OL}	Low Level Output Current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$	2.4			V
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-3.2	mA
los	Short Circuit Output Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 2)	-20		-70	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			82	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time

Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \hline \end{aligned}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay 14 to PO	I2, $13,17,18=$ GND; Other Inputs (except l4) HIGH		$\begin{array}{r} 46 \\ 42 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay 14 to PE	I2, $13,17,18=$ GND; Other Inputs (except l4) HIGH		$\begin{array}{r} 51 \\ 48 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$	Propagation Delay I3 to PO	I7 = HIGH; Other Inputs (except I3) = GND		27	ns
$t_{\text {PHL }}$	Propagation Delay 14 to PO	All Inputs (except 14) = GND		25	ns

Functional Description

The 9348 is a 12-input parity generator. It provides odd and even parity for up to 12 data bits. The Even Parity output (PE) will be HIGH if an even number of logic ones are present on the inputs. The Odd Parity output (PO) will be HIGH if an odd number of logic ones are present on the inputs. The logic equations for the outputs are shown below.

Note: Less through delay is encountered from the $10,11,12$ and 13 inputs than 14 thru 111 inputs. Therefore, if some signals are slower than others, the slower signals should be applied to these four inputs for maximum speed.

Truth Table

Inputs		Outputs	
IO-I11		PO	PE
All Twelve	Inputs LOW	L	H
Any One	Inputs HIGH	H	L
Any Two	Inputs HIGH	L	H
Any Three	Inputs HIGH	H	L
Any Four	Inputs HIGH	L	H
Any Five	Inputs HIGH	H	L
Any Six	Inputs HIGH	L	H
Any Seven	Inputs HIGH	H	L
Any Eight	Inputs HIGH	L	H
Any Nine	Inputs HIGH	H	L
Any Ten	Inputs HIGH	L	H
Any Eleven	Inputs HIGH	H	L
Any Twelve	Inputs HIGH	L	H

H $=$ HIGH Voltage Level
L = LOW Voltage Level

Logic Diagram

Physical Dimensions inches (millimeters)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

