

9348 **12-Input Parity Checker/Generator**

General Description

The 9348 is a 12-input parity checker/generator generating odd and even parity outputs. It can be used in high speed error detection applications.

© 1995 National Semiconductor Corporation TL/F/9795 RRD-B30M115/Printed in U. S. A.

June 1989

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
Military	-55°C to +125°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	9348			Units	
Symbol	T arameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.5	5	5.5	V	
V _{IH}	High Level Input Voltage	2			V	
V _{IL}	Low Level Input Voltage			0.8	V	
I _{OH}	High Level Output Current			-0.8	mA	
I _{OL}	Low Level Output Current			16	mA	
T _A	Free Air Operating Temperature	-55		125	°C	

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.4			V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max, V_{IH} = Min$			0.4	V
II.	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$			80	μΑ
Ι _{ΙL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-3.2	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-70	mA
ICC	Supply Current	V _{CC} = Max			82	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. Note 2: Not more than one output should be shorted at a time.

Switching Characteristics

 $V_{CC}=$ + 5.0V, $T_{A}=$ + 25°C (See Section 1 for waveforms and load configuration)

Symbol	Parameter	Conditions	C _L = 15 pF R _L = 400Ω		Units
			Min	Мах	
t _{PLH} t _{PHL}	Propagation Delay I4 to PO	I2, I3, I7, I8 = GND; Other Inputs (except I4) HIGH		46 42	ns
t _{PLH} t _{PHL}	Propagation Delay I4 to PE	I2, I3, I7, I8 = GND; Other Inputs (except I4) HIGH		51 48	ns
t _{PLH}	Propagation Delay I3 to PO	I7 = HIGH; Other Inputs (except I3) = GND		27	ns
t _{PHL}	Propagation Delay I4 to PO	All Inputs (except I4) = GND		25	ns

Functional Description

The 9348 is a 12-input parity generator. It provides odd and even parity for up to 12 data bits. The Even Parity output (PE) will be HIGH if an even number of logic ones are present on the inputs. The Odd Parity output (PO) will be HIGH if an odd number of logic ones are present on the inputs. The logic equations for the outputs are shown below.

 $\begin{array}{l} \mathsf{PO} = \underbrace{\mathsf{I0} \oplus \mathsf{I1} \oplus \mathsf{I2} \oplus \mathsf{I3} \oplus \mathsf{I4} \oplus \mathsf{I5} \oplus \mathsf{I6} \oplus \mathsf{I7} \oplus \mathsf{I8} \oplus \mathsf{I9} \oplus \mathsf{I10} \oplus \mathsf{I11} \\ \mathsf{PE} = \underbrace{\mathsf{I0} \oplus \mathsf{I1} \oplus \mathsf{I2} \oplus \mathsf{I3} \oplus \mathsf{I4} \oplus \mathsf{I5} \oplus \mathsf{I6} \oplus \mathsf{I7} \oplus \mathsf{I8} \oplus \mathsf{I9} \oplus \mathsf{I10} \oplus \mathsf{I11} \\ \end{array}$

Note: Less through delay is encountered from the 10, 11, 12 and 13 inputs than 14 thru 111 inputs. Therefore, if some signals are slower than others, the slower signals should be applied to these four inputs for maximum speed.

Truth Table

Inp	Outputs		
10-	PO	PE	
All Twelve	Inputs LOW	L	н
Any One	Inputs HIGH	н	L
Any Two	Inputs HIGH	L	н
Any Three	Inputs HIGH	Н	L
Any Four	Inputs HIGH	L	н
Any Five	Inputs HIGH	н	L
Any Six	Inputs HIGH	L	н
Any Seven	Inputs HIGH	Н	L
Any Eight	Inputs HIGH	L	н
Any Nine	Inputs HIGH	н	L
Any Ten	Inputs HIGH	L	н
Any Eleven	Inputs HIGH	н	L
Any Twelve	Inputs HIGH	L	Н

H = HIGH Voltage Level

L = LOW Voltage Level

Logic Diagram

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications