CY7C1019B

$128 \mathrm{~K} \times 8$ Static RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Center power/ground pinout
- Automatic power-down when deselected
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- Functionally equivalent to CY7C1019
- Available in Pb-free and non Pb-free 32-pin TSOP II, non Pb-free 400-mil-wide SOJ packages.

Functional Description

The CY7C1019B is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory
expansion is provided by an active LOW Chip Enable ($\overline{\mathrm{CE}})$, an active LOW Output Enable ($\overline{\mathrm{OE}}$), and tri-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.
Writing to the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the eight I/O pins $\left(1 / O_{0}\right.$ through $\left.I / O_{7}\right)$ is then written into the location specified on the address pins (A_{0} through A_{16}).
Reading from the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{\mathrm{OE})}$ LOW while forcing Write Enable (VE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation ($\overline{\mathrm{CE}}$ LOW, and WE LOW).

Logic Block Diagram

Pin Configurations
SOJ ITSOPII
Top View

A_{0}	1	32	${ }_{16}$
A_{1}	- 2	31	A_{15}
A_{2}	\square	30	A_{14}
A_{3}	4	29	A_{13}
$\overline{\mathrm{CE}}$	$\square 5$	28	$\overline{\mathrm{OE}}$
$\mathrm{l} / \mathrm{O}_{0}$	$\square 6$	27	$\square 1 / \mathrm{O}_{7}$
$\mathrm{l} / \mathrm{O}_{1}$	7	26	$1 / \mathrm{O}_{6}$
$V_{\text {cc }}$	8	25	$V_{S S}$
$\mathrm{V}_{\text {SS }}$	$\square 9$	24	V_{CC}
$\mathrm{I} / \mathrm{O}_{2}$	$\square 10$	23	$1 / \mathrm{O}_{5}$
$1 / \mathrm{O}_{3}$	$\square 11$	22	$\square 1 / \mathrm{O}_{4}$
$\overline{\mathrm{WE}}$	$\square 12$	21	A_{12}
A_{4}	$\square 13$	20	A_{11}
A_{5}	$\square 14$	19	A_{10}
A_{6}	-15	18	A_{9}
A_{7}	$\square 16$	17	A_{8}

Selection Guide

	$\mathbf{- 1 2}$	$\mathbf{- 1 5}$	Unit
Maximum Access Time	12	15	ns
Maximum Operating Current	140	130	mA
Maximum Standby Current	10	10	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} \ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$. \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW).. 20 mA
Static Discharge Voltage... >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current.. >200 mA
Operating Range

Range	Ambient Temperature${ }^{[2]}$	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	-12		-15		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.3	0.8	-0.3	0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-5	+5	-5	+5	$\mu \mathrm{A}$
${ }^{\text {cc }}$	$V_{\text {Cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		140		130	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power- Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, f=f_{\mathrm{MAX}} \end{aligned}$		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \\ & \hline \end{aligned}$		10		10	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUTO- } \underbrace{167 \Omega} \longrightarrow \quad 1.73 \mathrm{~V}
$$

Notes:

1. V_{IL} (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
. T_{A} is the "Instant On" case temperature.
2. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics ${ }^{[4]}$ Over the Operating Range

Parameter	Description	-12		-15		Unit
		Min.	Max.	Min.	Max.	
Read Cycle						
t_{RC}	Read Cycle Time	12		15		ns
t_{AA}	Address to Data Valid		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		6		7	ns
t Lzoe	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		6		7	ns
tlzce	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[5,6]}$		6		7	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15	ns
Write Cycle ${ }^{[7,8]}$						
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	9		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		10		ns
t_{HA}	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	6		8		ns
t_{HD}	Data Hold from Write End	0		0		ns
tlzwe	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High ${ }^{[5,6]}$		6		7	ns

Notes:
4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance
5. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{I Z C E}, t_{H Z O E}$ is less than $t_{I Z O E}$, and $t_{H Z W E}$ is less than $t_{\text {LZWE }}$ for any given device.
7. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
8. The minimum write cycle time for Write Cycle no. 3 (WE controlled, $\overline{O E} L O W$) is the sum of $t_{H Z W E}$ and $t_{S D}$.

CY7C1019B

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[10,11]}$

Notes:
9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW

CY7C1019B
Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[12,13]}$

Write Cycle No. 2 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[12,13]}$

Notes:
12. Data I / O is high impedance if $\mathrm{OE}=\mathrm{V}_{\mathrm{I}}$.
13. If $\overline{\text { CE }}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
14. During this period the I/Os are in the output state and input signals should not be applied.

CY7C1019B

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[13]}$

Truth Table

$\overline{C E}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	Data Out	Read	Active (I_{CC})
L	X	L	Data In	Write	Active (I_{cc})
L	H	H	High Z	Selected, Outputs Disabled	Active (I_{CC})

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1019B-12VC	51-85033	32-pin 400-Mil Molded SOJ	Commercial
	CY7C1019B-12ZC	51-85095	32-pin TSOP Type II	
	CY7C1019B-12ZXC		32-pin TSOP Type II (Pb -Free)	
15	CY7C1019B-15VC	51-85033	32-pin 400-Mil Molded SOJ	Commercial
	CY7C1019B-15ZXC	51-85095	32-pin TSOP Type II (Pb -Free)	

[^0]
Package Diagrams

32-pin (400-mil) Molded SOJ (51-85033)

32-pin TSOP II (51-85095)

All product or company names mentioned in this document may be the trademarks of their respective holders.

CY7C1019B

Document History Page

Document Title: CY7C1019B 128K x 8 Static RAM Document Number: 38-05026				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109949	09/25/01	SZV	Change from Spec number: 38-01115 to 38-05026
*A	116170	08/14/02	HGK	1. SOJ (400-mil) package outline replacing incorrect SOJ package 2. Pin for pin compatible with CY7C1019 3. Industrial packages added to Ordering Information
*B	397875	See ECN	NXR	Changed address of Cypress Semiconductor Corporation on Page\# 1 from "3901 North First Street" to "198 Champion Court" Updated the Ordering Information Table on page \# 6
*C	493543	See ECN	NXR	Removed CY7C10191B from product offering Removed Industrial Operating Range Changed the description of I_{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed IOS parameter from DC Electrical Characteristics table Updated Ordering Information table

[^0]: Please contact local sales representative regarding availability of these parts

