National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

LM185-1.2QML Micropower Voltage Reference Diode General Description

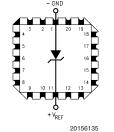
The LM185-1.2 is a micropower 2-terminal band-gap voltage regulator diodes. Operating over a 10μ A to 20mA current range, it features exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life.

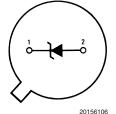
Further, the wide operating current allows it to replace older references with a tighter tolerance part.

Features

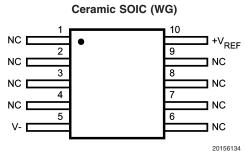

- Operating current of 10µA to 20mA
- 1Ω maximum dynamic impedance (typical)
- Low temperature coefficient
- Low voltage reference 1.235V

Ordering Information

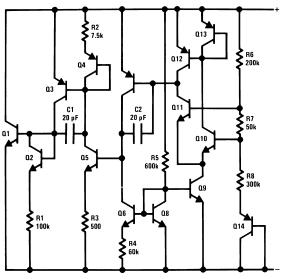
NS Part Number	JAN Part Number	NS Package Number	Package Description
LM185E-1.2/883	5962-87594012A	E20A	20LD LCC
LM185H-1.2-SMD	5962-8759401XA	H02A	2 LD T0-46
LM185H-1.2-QV	5962-8759401VXA	H02A	2 LD T0-46
LM185WG-1.2/883	5962-8759401YA	WG10A	10LD Ceramic SOIC
LM185BYH-1.2-SMD	5962-8759405XA	H02A	2 LD T0-46
LM185WG-1.2-QV	5962-8759401VYA	WG10A	10LD Ceramic SOIC


Connection Diagrams

Hermetic Leadless Chip Carrier (E)


See NS Package Number E20A

TO-46 Metal Can Package (H)


Bottom View See NS Package Number H02A

Connection Diagrams (Continued)

See NS Package Number WG10A

Schematic Diagram

20156107

LM185-1.2QML

Absolute Maximum Ratings (Note 1)

Reverse Current	30mA
Forward Current	10mA
Operating Temperature Range	–55°C ≤ T _A ≤ +125°C
Maximum Junction Temperature (T _{Jmax}) (Note 2)	+150°C
Storage Temperature	$-55^{\circ}C \le T_{A} \le +150^{\circ}C$
Lead Temperature (Soldering 10 Seconds)	
Ceramic SOIC	260°C
TO-46 package	300°C
20LD LCC package	300°C
Thermal Resistance	
θ_{JA}	
Metal Can (Still Air)	300°C/W
Metal Can (500LF / Min Air Flow)	139°C/W
20LD LCC (Still Air)	100°C/W
20LD LCC (500LF / Min Air Flow)	73°C/W
Ceramic SOIC (Still Air)	194°C/W
Ceramic SOIC (500LF / Min Air Flow)	128°C/W
θ _{JC}	
Metal Can	57°C/W
20LD LCC	25°C/W
Ceramic SOIC	23°C/W
Package Weight (Typical)	
Metal Can	TBD
20LD LCC	TBD
Ceramic SOIC	210mg
ESD Tolerance (Note 3)	4KV

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

LM185–1.2 Electrical Characteristics DC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{Ref}	Reverse Breakdown Voltage	I _R = 10μΑ		1.223	1.247	V	1
		I _R = 20μΑ		1.205	1.26	V	2, 3
		I _R = 1mA		1.223	1.247	V	1
				1.205	1.26	V	2, 3
		I _R = 20mA		1.223	1.247	V	1
				1.205	1.26	V	2, 3
$\Delta V_{Ref} / \Delta I_{R}$	Reverse Breakdown Voltage	$10\mu A \le I_R \le 1mA$		-1.0	1.0	mV	1
	Change with Current	$20\mu A \le I_R \le 1mA$		-1.5	1.5	mV	2, 3
		$1mA \le I_R \le 20mA$		-10.0	10.0	mV	1
				-20.0	20.0	mV	2, 3
V _F	Forward Bias Voltage	I _F = 2mA		-1.0	-0.4	V	1

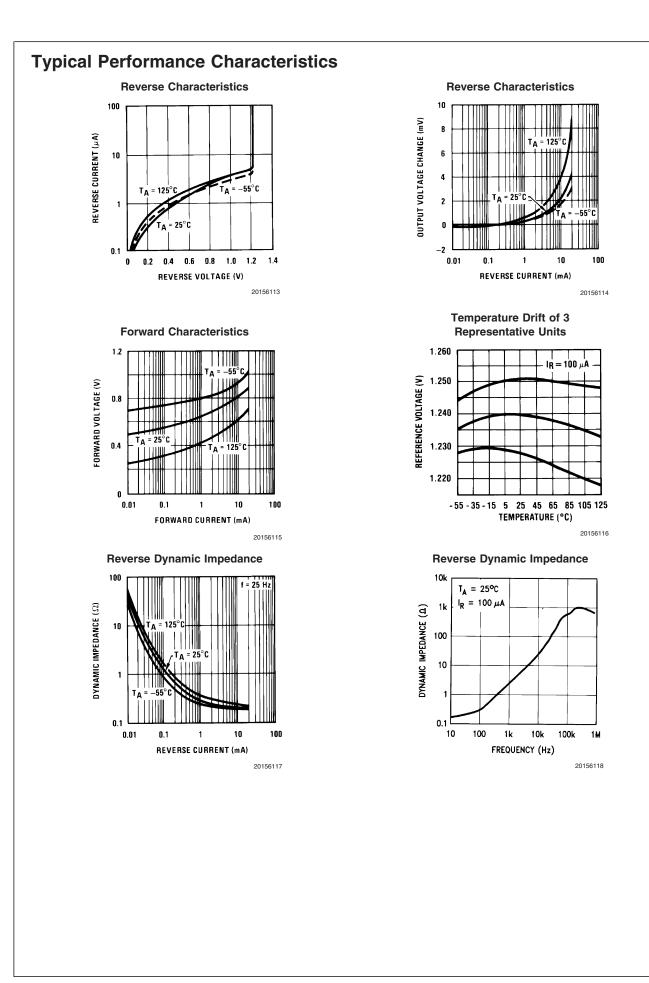
DC Drift Parameters

Delta calculations performed on QMLV devices at group B , subgroup 5, unless otherwise specified on the IPI.

Symbol	Parameter	Conditions	Notes	Min	Мах	Units	Sub- groups
V _R	Reverse Breakdown Voltage	I _R = 10μΑ		-0.01	0.01	V	1
		I _R = 20mA		-0.01	0.01	V	1

LM185BY-1.2 Electrical Characteristics

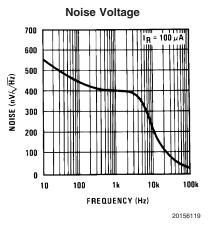
DC Parameters

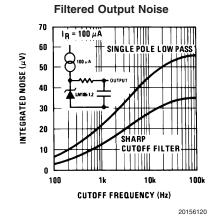

Symbol	Parameter	Conditions	Notes	Min	Мах	Units	Sub- groups
V _{Ref}	Reverse Breakdown Voltage	I _R = 10μA		1.223	1.247	V	1
		I _R = 20μA		1.205	1.26	V	2, 3
		I _R = 1mA		1.223	1.247	V	1
				1.205	1.26	V	2, 3
		I _R = 20mA		1.223	1.247	V	1
				1.205	1.26	V	2, 3
$\Delta V_{Ref} / \Delta I_{R}$	Reverse Breakdown Voltage	$10\mu A \le I_R \le 1mA$		-1.0	1.0	mV	1
	Change with Current	$20\mu A \le I_R \le 1mA$		-1.5	1.5	mV	2, 3
		$1mA \le I_R \le 20mA$		-10.0	10.0	mV	1
				-20.0	20.0	mV	2, 3
V _F	Forward Bias Voltage	I _F = 2mA		-1.0	-0.4	V	1
T _c	Temperature Coefficient		(Note 4)		50	PPM/°C	2, 3

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

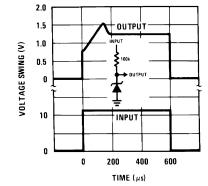
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: Human body model, $1.5K\Omega$ in series with 100pF.

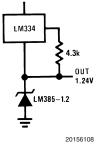

Note 4: The average temperature coefficient is defined as the maximum deviation of reference voltage, at all measured temperatures between the operating T_{Min} & T_{Max} , divided by ($T_{Max} - T_{Min}$). The measured temperatures ($T_{Measured}$) are -55°C, 25°C, & 125°C or ΔV_{Ref} / ($T_{Max} - T_{Min}$)

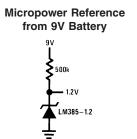


LM185-1.2QML

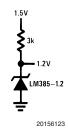


Typical Performance Characteristics (Continued)

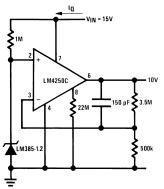




20156121

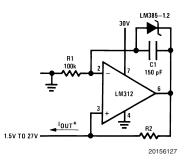


20156122


Reference from 1.5V Battery

LM185-1.2QML

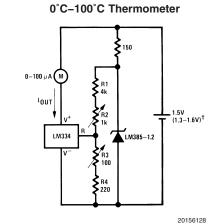
١Q $V_{IN} \ge 5.2V$ V⁺ **{** 47k LM334 2N2905 5.1k $V_0 = 5V$ $I_L \le 100 \text{ mA}$ LM4250C 1N457 150 pF 🗲 390k 1N457 + 4.7 μF TANTALUM **\$**120k **€**10M ₹₂ĸ LM385-1.2 -20156124 $*I_Q \simeq 30 \mu A$ **Micropower* 10V Reference**


Typical Applications (Continued)

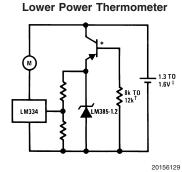
Micropower* 5V Regulator

 ${}^{*}I_Q \simeq 20 \mu A \text{ standby current}$

-1.5V TO -27V -1.5V TO -27V

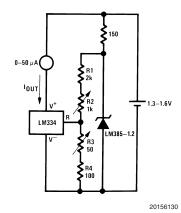

Precision 1µA to 1mA Current Sources

20156125


Typical Applications (Continued)

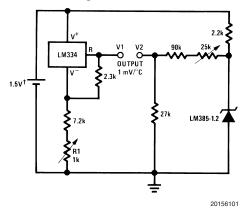
METER THERMOMETERS




Calibration

1. Short LM385-1.2, adjust R3 for I_{OUT} = temp at 1µA/*K 2. Remove short, adjust R2 for correct reading in centigrade † I_Q at 1.3V=500µA I_Q at 1.6V=2.4mA

*2N3638 or 2N2907 select for inverse $H_{FE} \simeq 5$ †Select for operation at 1.3V $\ddagger I_{Q} \simeq 600\mu A$ to 900 μA

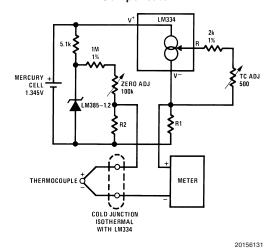


Calibration

1. Short LM385-1.2, adjust R3 for I_{OUT} = temp at 1.8µA/°K 2. Remove short, adjust R2 for correct reading in °F

Typical supply current 50µA

Centigrade Thermometer


Calibration

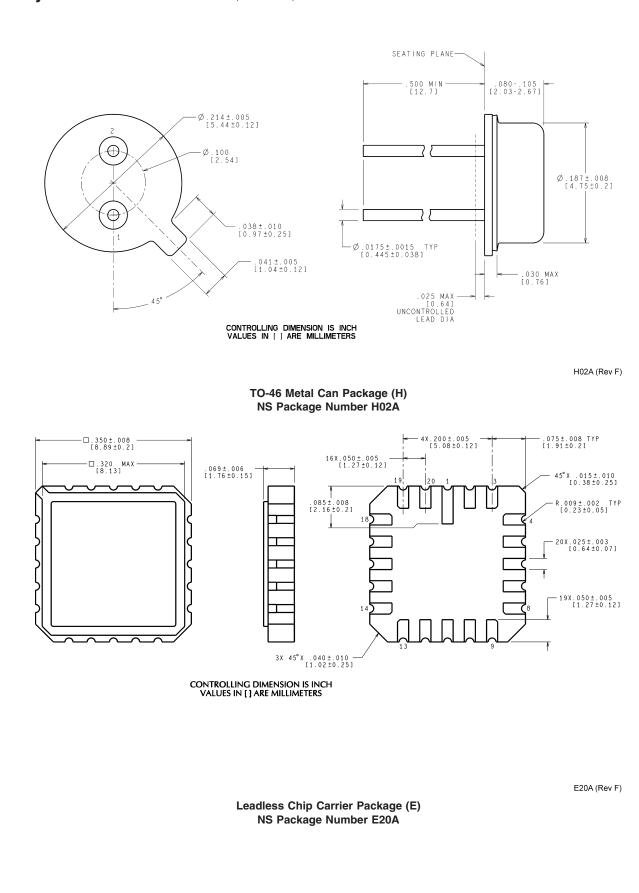
Adjust R1 so that V1 = temp at 1mV/°K
Adjust V2 to 273.2mV

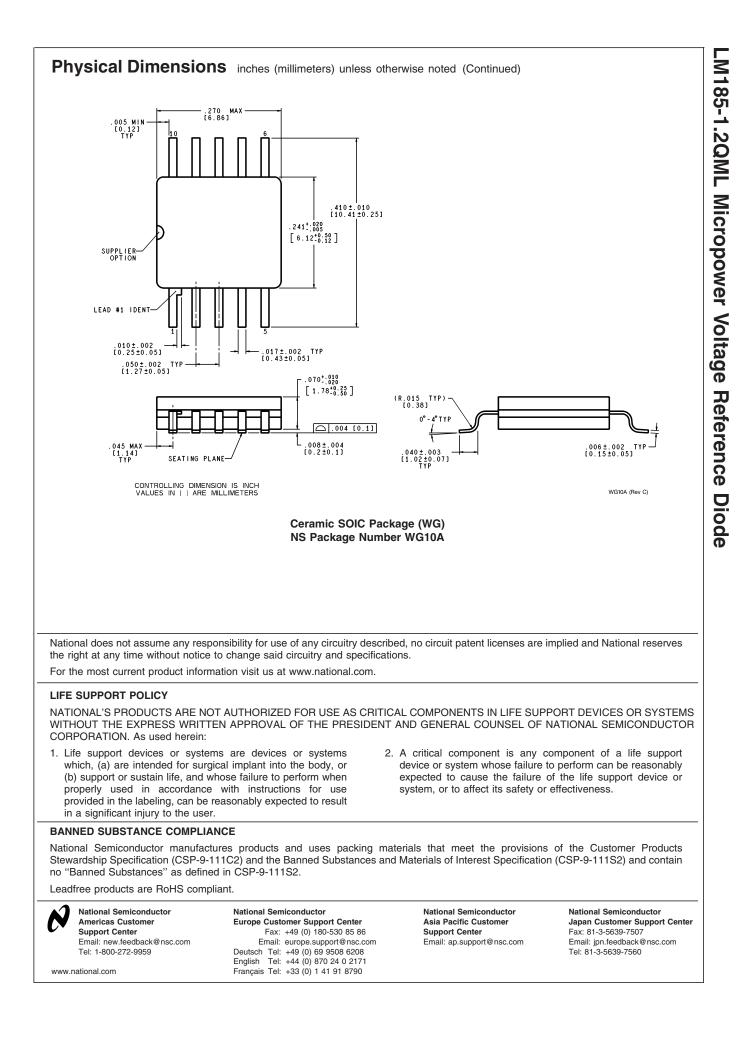
[†]I_O for 1.3V to 1.6V battery volt-

age = 50μ A to 150μ A

Micropower Thermocouple Cold Junction Compensator

Adjustment Procedure


1. Adjust TC ADJ pot until voltage across R1 equals Kelvin temperature multiplied by the thermocouple Seebeck coefficient.


2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple Seebeck coefficient multiplied by 273.2.

Thermocouple Type	Seebeck Coefficient		Voltage Across R1	Voltage Across R2
	(µV/°C)		@ 25°C	(mV)
			(mV)	
J	52.3	52 3 .24k	15.60	14.32
Т	42.8	432 1k	12.77	11.78
К	40.8	41 2 53Ω	12.17	11.17
S	6.4	63.4 50Ω	1.908	1.766

Released	Revision	Section	Originator	Changes
10/07/05	A	New Release, Corporate format	L. Lytle	2 MDS data sheets converted into one Corp data sheet format. MNLM185-1.2-X Rev 2A and MNLM185BY-1.2-X Rev 0B0 data sheets will be archived.

Physical Dimensions inches (millimeters) unless otherwise noted

