

4-Mbit (256K x 16) Static RAM

Features

Temperature Ranges

Industrial: -40°C to +85°CAutomotive: -40°C to +125°C

• Very high speed: 45 ns

• Wide voltage range: 2.20V-3.60V

Pin-compatible with CY62147CV25, CY62147CV30, and
 CY62147CV22

CY62147CV33

· Ultra-low active power

Typical active current: 1.5 mA @ f = 1 MHz

— Typical active current: 8 mA @ f = f_{max}

· Ultra low standby power

• Easy memory expansion with CE, and OE features

· Automatic power-down when deselected

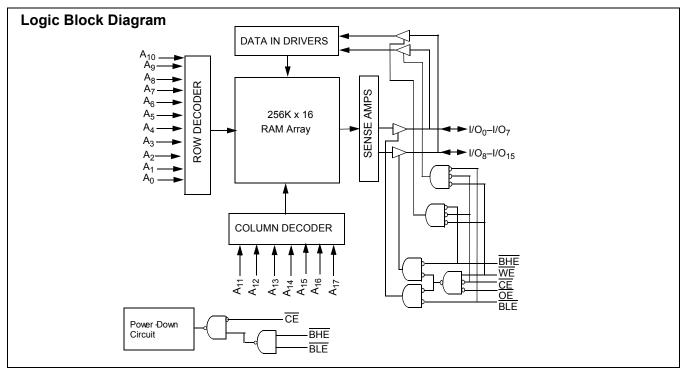
CMOS for optimum speed/power

Packages offered 48-ball BGA and 44-pin TSOPII

Available in Lead-Free packages

Byte power-down feature

Functional Description^[1]


The CY62147DV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features ad-

vanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life $^{\rm TM}$ (MoBL $^{\rm I\!B}$) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (CE HIGH or both BLE and BHE are HIGH). The input/output pins (I/O0 through I/O15) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (<u>CE</u>) and Write Enable (<u>WE</u>) inputs LOW. If Byte Low Enable (<u>BLE</u>) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified <u>on the</u> address pins (A $_0$ through A $_{17}$). If Byte High Enable (<u>BHE</u>) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62147DV30 is available in a 48-ball VFBGA, 44 Pin TSOPII packages.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2, 3, 4]

VFBGA (Top View)

5 6 ŌE A_2 NC BLE A_0 Α BHE CE 1/Q₈ A_3 A_4 I/O₀ В 1/O₁₀) С I/Q₉ A_5 A_6 I/O_1 1/02 1/O₁₁ Vcc A₁₇ V_{SS} I/O₃ D (1/O₁₂) V_{CC} DNU I/O₄ A₁₆ Ε 1/O₁₃ 1/014 A₁₄ I/O₅ I/Q F A_{15} A₁₃ 1/O₁₅ NC A_{12} WE 1/07 G A₁₁ A₈ A₉ NC A_{10} NC. Н

44 TSOP II (Top View)

4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25	A ₅ A ₆ A ₇ DE BHE DI BLE DI VO 13 DI VO 10 D
A ₁₅ [A ₁₄ [-	-	
A ₁₃	22	23	□ A ₁₂

Product Portfolio

						Power Dissipation					
					Speed	0	perating	g I _{CC} (m/	A)	Standl	ov lana
Product	Range	V _C	_C Range	(V)	(ns)	f = 1	MHz	f = 1	max	Standby I _{SB2} (μ A)	
		Min.	Typ. ^[5]	Max.		Typ. ^[5]	Max.	Typ. ^[5]	Max.	Typ. ^[5]	Max.
CY62147DV30L	Industrial	2.2V	3.0	3.6	45	1.5	3	10	20	2	12
CY62147DV30LL	Industrial	1									8
CY62147DV30L	Industrial	2.2V	3.0	3.6	55	1.5	3	8	15	2	12
CY62147DV30L	Automotive	1									25
CY62147DV30LL	Industrial	1									8
CY62147DV30L	Industrial	2.2V	3.0	3.6	70	1.5	3	8	15	2	12
CY62147DV30LL	Industrial	1									8

- NC pins are not internally connected on the die.
 NC pins are not internally connected on the die.
 DNU pins have to be left floating or tied to V_{SS} to ensure proper application.
 Pins H1, G2, and H6 in the BGA package are address expansion pins for 8 Mb, 16 Mb, and 32 Mb, respectively.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential-0.3V to + V_{CC(MAX)} + 0.3V DC Voltage Applied to Outputs in High-Z State $^{[6,7]}$-0.3V to $V_{CC(MAX)}$ + 0.3V DC Input Voltage^[6,7] –0.3V to V_{CC(MAX)} + 0.3V

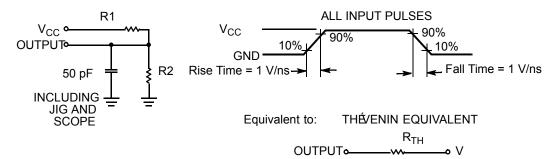
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

Device	Range	Ambient Temperature (T _A)	V cc ^[8]
CY62147DV30L	Industrial	–40°C to +85°C	2.20V
	Automotive	-40°C to +125°C	to 3.60V
CY62147DV30LL	Industrial	–40°C to +85°C	

Electrical Characteristics (Over the Operating Range)

				CY	62147DV	30-45	CY6	2147DV3	30-55/70	
Parameter	Description	Test Conditions			Typ. ^[5]	Max.	Min.	Typ . ^[5]	Max.	Unit
V _{OH}		I _{OH} = -0.1 mA	V _{CC} = 2.20V	2.0			2.0			V
	Voltage	I _{OH} = -1.0 mA	V _{CC} = 2.70V	2.4			2.4			V
V _{OL}		I _{OL} = 0.1 mA	V _{CC} = 2.20V			0.4			0.4	V
	Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.70V			0.4			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 2.7V		1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.6V		2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW	V _{CC} = 2.2V to 2.7V		-0.3		0.6	-0.3		0.6	V
	Voltage	V _{CC} = 2.7V to 3.6V		-0.3		0.8	-0.3		0.8	V
I _{IX}	Input	$GND \leq V_I \leq V_CC$	Industrial	-1		+1	-1		+1	μА
	Leakage Current		Automotive				-4		+4	μА
I _{OZ}	Output	GND \leq V _O \leq V _{CC} ,	Industrial	-1		+1	-1		+1	μА
	Leakage Current	Output Disabled	Automotive				-4		+4	μА
I _{CC}	V _{CC}	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$		10	20		8	15	mA
	Operating Supply Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		1.5	3		1.5	3	mA
I _{SB1}		$\overline{CE} \ge V_{CC} - 0.2V$,	Industrial L		2	12		2	12	μΑ
	Power-Down Current —	$V_{IN} \ge V_{CC} - 0.2V, V_{IN} \le 0.2V)$ f = f_{MAX} (Address and	Automotive L						25	
	CMOS Inputs		Industrial LL			8			8	
I _{SB2}	Automatic CE	$\overline{CE} \ge V_{CC} - 0.2V$	Industrial L		2	12		2	12	μΑ
	Power-Down Current —	$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$,	Automotive L						25	
		f = 0, V _{CC} = 3.60V	Industrial LL			8			8	

- N_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 V_{IH(max.)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 Full device AC operation assumes a 100-μs ramp time from 0 to V_{CC}(min) and 200-μs wait time after V_{CC} stabilization.

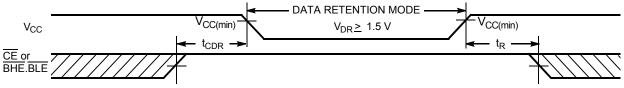

Capacitance (for all packages)[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance^[9]

Parameter	Description	Test Conditions	BGA	TSOP II	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	72	75.13	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		8.86	8.95	°C/W

AC Test Loads and Waveforms^[10]



Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V_{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[5]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}=1.5V}{CE \ge V_{CC}-0.2V,}$	L (Ind'I)			9	μΑ
		$CE \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	L (Auto)			15	
		$V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or } V_{\text{IN}} \le 0.2V$	LL (Ind'I)			6	
t _{CDR} ^[9]	Chip Deselect to Data Retention Time			0			ns
t _R ^[11]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[12]

- Notes:

 9. Tested initially and after any design or process changes that may affect these parameters.

 10. Test condition for the 45-ns part is a load capacitance of 30 pF.

 11. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

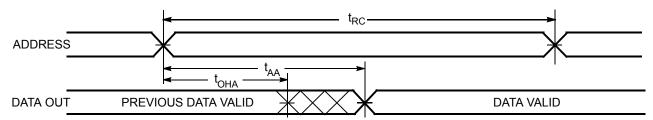
 12. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics Over the Operating Range^[13]

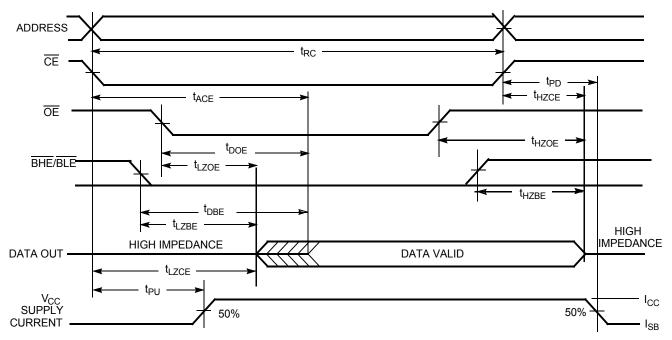
		45 ı	าร ^[10]	55 ns		70 ns		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		•	•	•	•	•	•	•
t _{RC}	Read Cycle Time			55		70		ns
t _{AA}	Address to Data Valid		45		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		10		ns
t _{ACE}	CE LOW to Data Valid		45		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		25		35	ns
t _{LZOE}	OE LOW to LOW Z ^[14]	5		5		5		ns
t _{HZOE}	OE HIGH to High Z ^[14, 15]		15		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[14]	10		10		10		ns
t _{HZCE}	CE HIGH to High Z ^[14, 15]		20		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		45		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		45		55		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[14]	10		10		10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[14, 15]		15		20		25	ns
Write Cycle ^[16]		•	•	•	•	•	•	
t _{WC}	Write Cycle Time	45		55		70		ns
t _{SCE}	CE LOW to Write End	40		40		60		ns
t _{AW}	Address Set-up to Write End	40		40		60		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	35		40		45		ns
t _{BW}	BLE/BHE LOW to Write End	40		40		60		ns
t _{SD}	Data Set-up to Write End	25		25		30		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High-Z ^[14, 15]		15		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[14]	10		10		10		ns

^{13.} Test conditions for all parameters other than three-state parameters assume signal transition time of 3 ns (1 V/ns) or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

14. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} for any given device.


^{15.} t_{HZOE}, t_{HZBE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high</u> impedence state.

16. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

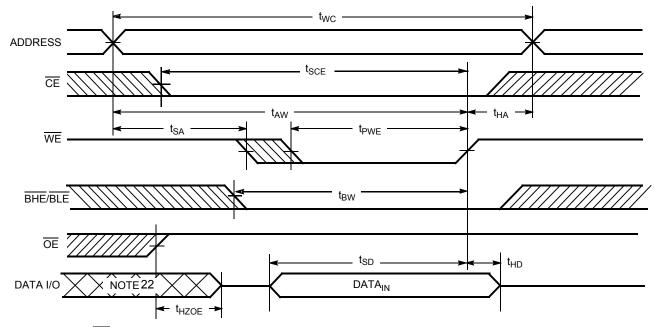


Switching Waveforms

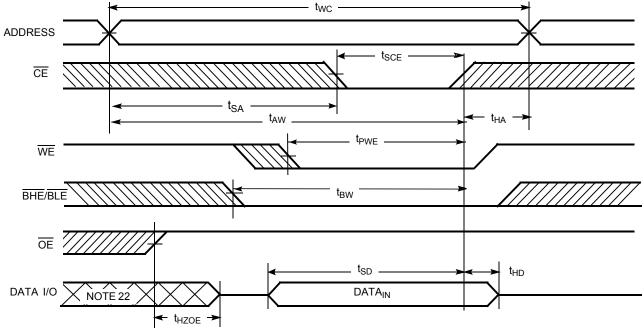
Read Cycle 1 (Address Transition Controlled)^[17, 18]

Read Cycle No. 2 (OE Controlled)^[18, 19]

- 17. The device is continuously selected. OE, CE=V_{IL}, BHE and/or BLE = V_{IL}.


 18. WE is HIGH for read cycle.

 19. Address valid prior to or coincident with CE and BHE, BLE transition LOW.

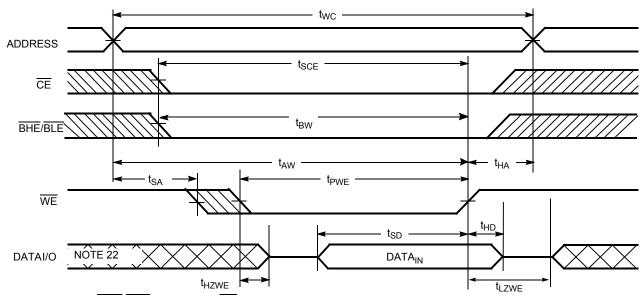


Switching Waveforms (continued)

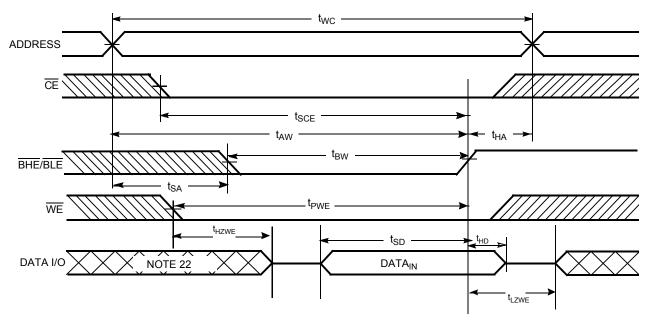
Write Cycle No. 1 (WE Controlled)^[16, 20, 21]

Write Cycle No. 2 (CE Controlled)[16, 20, 21]

20. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.


21. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE = V_{IH}, the output remains in a high-impedance state.

22. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

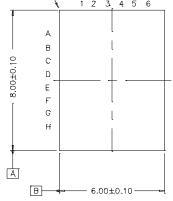
Write Cycle No. 3 (WE Controlled, OE LOW)[21]

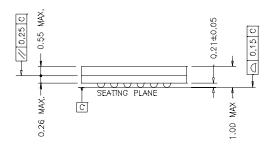
Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[21]

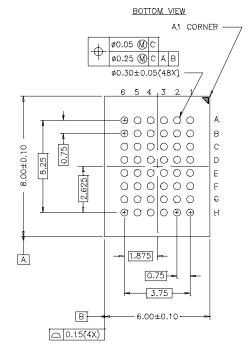
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O –I/O ₁₅)	Write	Active (I _{CC})
L	L	X	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information

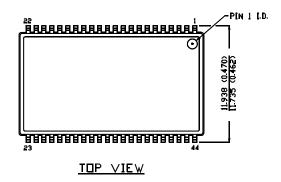

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY62147DV30LL-45BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62147DV30LL-45BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62147DV30LL-45ZSXI	ZS-44	44-pin TSOP II (Pb-free)	
55	CY62147DV30L-55BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62147DV30L-55BVXE		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	Automotive
	CY62147DV30L-55BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	Industrial
	CY62147DV30LL-55BVI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	
	CY62147DV30LL-55BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62147DV30L-55ZSXI	ZS-44	44-pin TSOP II (Pb-free)	Industrial
	CY62147DV30L-55ZSXE			Automotive
	CY62147DV30LL-55ZSXI			Industrial
70	CY62147DV30L-70BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62147DV30L-70BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62147DV30LL-70BVI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	
	CY62147DV30LL-70BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62147DV30L-70ZSXI	ZS-44	44-pin TSOP II (Pb-free)	Industrial
	CY62147DV30LL-70ZSXI			

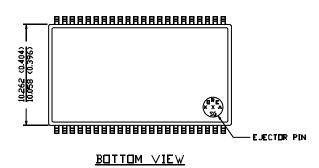


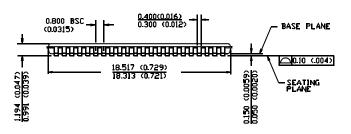

Package Diagram

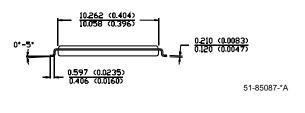
48-Lead VFBGA (6 x 8 x 1 mm) BV48A

TOP VIEW


51-85150-*B




Package Diagram (continued)


44-Pin TSOP II ZS44

DIMENSION IN MM (INCH)
MAX
MIN

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	127481	06/17/03	HRT	New Data Sheet
*A	131010	01/23/04	CBD	Change from Advance to Preliminary
*B	213252	See ECN	AJU	Change from Preliminary to Final Added 70 ns speed bin Modified footnote 7 to include ramp time and wait time Modified input and output capacitance values to 10 pF Modified Thermal Resistance values on page 4 Added "Byte power-down feature" in the features section Modified Ordering Information for Pb-free parts
*C	257349	See ECN	PCI	Modified ordering information for 70-ns Speed Bin
*D	316039	See ECN	PCI	Added 45-ns Speed Bin in AC, DC and Ordering Information tables Added Footnote #10 on page #4 Added Pb-free package ordering information on page # 9 Changed 44-lead TSOP-II package name on page 11 from Z44 to ZS44 Standardized Icc values across 'L' and 'LL' bins
*E	330365	See ECN	AJU	Added Automotive product information