

March 2001 Revised January 2005

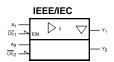
NC7WZ125

TinyLogic® UHS Dual Buffer with 3-STATE Outputs

General Description

The NC7WZ125 is a Dual Non-Inverting Buffer with independent active LOW enables for the 3-STATE outputs. The Ultra High Speed device is fabricated with advanced CMOS technology to achieve superior switching performance with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V $V_{\rm CC}$ operating range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 5.5V independent of V_{CC} operating range. Outputs tolerate voltages above V_{CC} when in the 3-STATE condition.

Features


- Space saving US8 surface mount package
- MicroPak™ Pb-Free leadless package
- Ultra High Speed; t_{PD} 2.6 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Matches the performance of LCX when operated at $3.3V V_{CC}$
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Outputs are overvoltage tolerant in 3-STATE mode
- Proprietary noise/EMI reduction circuitry implemented

Ordering Code:

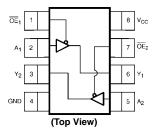
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7WZ125K8X	MAB08A	WZ25	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7WZ125L8X	MAC08A	P3	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

Pb-Free package per JEDEC J-STD-020B.

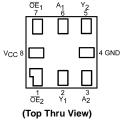
Logic Symbol

Pin Descriptions

Pin Names	Description
ŌE _n	Enable Inputs for 3-STATE Outputs
A _n	Input
Y _n	3-STATE Outputs


Function Table

H = HIGH Logic Level


Inp	Output	
OE	A _n	Y _n
L	L	L
L	Н	Н
Н	L	Z
Н	Н	Z

L = LOW Logic Level TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.

Connection Diagrams

Pad Assignments for MicroPak

 $\label{eq:microPak} \mbox{MicroPak}^{\mbox{\tiny TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

Z = 3-STATE

Absolute Maximum Ratings(Note 1)

@ V_{IN} < 0V

DC Output Diode Current (I_{OK})

Storage Temperature Range (T_{STG}) -65° C to +150 $^{\circ}$ C Junction Lead Temperature under Bias (T_{JJ}) +150 $^{\circ}$ C

Junction Lead Temperature (T_L)

(Soldering, 10 seconds) +260°C Power Dissipation (PD) @ +85°C 250 mW

Recommended Operating Conditions (Note 3)

 $\begin{array}{lll} \mbox{Supply Voltage Operating (V_{CC})} & 1.65\mbox{V to } 5.5\mbox{V} \\ \mbox{Supply Voltage Data Retention (V_{CC})} & 1.5\mbox{V to } 5.5\mbox{V} \\ \mbox{Input Voltage (V_{IN})} & 0\mbox{V to } 5.5\mbox{V} \\ \end{array}$

-50 mA Output Voltage (V_{OUT})

Input Rise and Fall Time (t_r, t_f)

 $\begin{array}{lll} V_{CC} @ 1.8V, 0.15V, 2.5V \pm 0.2V & 0 \text{ ns/V to } 20 \text{ ns/V} \\ V_{CC} @ 3.3V \pm 0.3V & 0 \text{ ns/V to } 10 \text{ ns/V} \\ V_{CC} @ 5.0V \pm 0.5V & 0 \text{ ns/V to } 5 \text{ ns/V} \end{array}$

Thermal Resistance (θ_{JA}) 250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

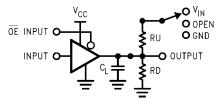
DC Electrical Characteristics

Symbol	Parameter	V _{CC}	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Syllibol	rarameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		V		
V_{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	V		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2		V	$V_{IN} = V_{IH}$	$I_{OH} = -100 \mu A$
		3.0	2.9	3.0		2.9		v	or V _{IL}	
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9			$V_{IN} = V_{IH} \\$	$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V	or V _{IL}	$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.10		0.10			
		2.3		0.0	0.10		0.10	V	$V_{IN} = V_{IH}$	$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.10		0.10	V	or V _{IL}	
		4.5		0.0	0.10		0.10			
		1.65		0.08	0.24		0.24			I _{OL} = 4 mA
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1	μА	$V_{IN} = 5.5V$, GND
I _{OZ}	3-STATE Output Leakage	1.65 to 5.5			±0.5		±5	μА	$V_{IN} = V_{IH}$	or V _{IL}
									0 ≤ V _{OUT} ≤	≤ 5.5V
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OL}	_{JT} = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1		10	μА	$V_{IN} = 5.5V$, GND
		ı					·			

Noise Characteristics

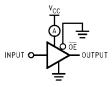
Symbol	Parameter	V _{CC}	$T_A = -$	⊦ 25°C	Units	Conditions
Cymbol	i didilicio	(V)	Тур	Max	Onne	Conditions
V _{OLP} (Note 4)	Quiet Output Maximum Dynamic V _{OL}	5.0		1.0	V	C _L = 50 pF
V _{OLV} (Note 4)	Quiet Output Minimum Dynamic V _{OL}	5.0		1.0	V	C _L = 50 pF
V _{OHV} (Note 4)	Quiet Output Minimum Dynamic V _{OH}	5.0		4.0	V	C _L = 50 pF
V _{IHD} (Note 4)	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF
V _{ILD} (Note 4)	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF

Note 4: Parameter guaranteed by design.

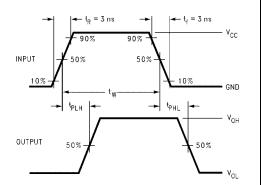

AC Electrical Characteristics

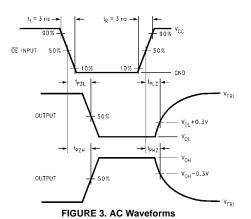
Symbol	Parameter	V _{CC}	$T_A = +25$ °C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
Syllibol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Nı	Number
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0		12.0	2.0	13.0		C _L = 15 pF	
t _{PHL}	A _N to Y _N	2.5 ± 0.2	1.0		7.5	1.0	8.0	ns	$R_D = 1 M\Omega$	Figures
		3.3 ± 0.3	0.8		5.2	0.8	5.5	115	S1= Open	1, 3
		5.0 ± 0.5	0.5		4.5	0.5	4.8			
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.2		5.7	1.2	6.0		C _L = 50 pF	
t _{PHL}	A _N to Y _N	5.0 ± 0.5	0.8		5.0	0.8	5.3	ns	$R_D = 500\Omega$	Figures 1, 3
									S1= Open	., 0
t _{OSLH} ,	Output to Output Skew	3.3 ± 0.3			1.0		1.0		C _L = 50 pF	
toshl	(Note 5)	5.0 ± 0.5			0.8		0.8	ns	$R_D = 500\Omega$	Figures 1, 3
									S1= Open	., -
t _{PZL} ,	Output Enable Time	1.8 ± 0.15	3.0		14.0	3.0	15.0		C _L = 50 pF	
t _{PZH}		2.5 ± 0.2	1.8		8.5	1.8	9.0		R_D , $R_U = 500 \Omega$	
		3.3 ± 0.3	1.2		6.2	1.2	6.5	ns	$S1 = GND$ for t_{PZH}	
		5.5 ± 0.5	0.8		5.5	0.8	5.8		$S1 = V_I \text{ for } t_{PZL}$	1, 3
									$V_I = 2 \times V_{CC}$	
t _{PLZ} ,	Output Disable Time	1.8 ± 0.15	2.5		12.0	2.5	13.0		C _L = 50 pF	
t_{PHZ}		2.5 ± 0.2	1.5		8.0	1.5	8.5		R_D , $R_U = 500 \Omega$	
		3.3 ± 0.3	0.8		5.7	0.8	6.0	ns	$S1 = GND$ for t_{PZH}	Figures 1, 3
		5.0 ± 0.5	0.3		4.7	0.3	5.0		$S1 = V_I \text{ for } t_{PZL}$., -
									$V_I = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		2.5				pF		
C_{OUT}	Output Capacitance	5.0		4				Pi		
C _{PD}	Power Dissipation Capacitance	3.3		10				pF	(Note 6)	Figure 2
		5.0		12				Pi	(14016-0)	i igule 2

 $\textbf{Note 5:} \ \text{Parameter guaranteed by design.} \ t_{\text{OSLH}} = |t_{\text{PLHmax}} - t_{\text{PLHmin}}|; \ t_{\text{OSHL}} = |t_{\text{PHLmax}} - t_{\text{PHLmin}}|.$


Note 6: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static)$.

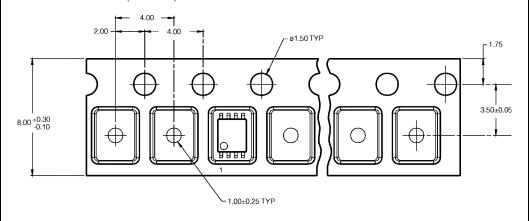
AC Loading and Waveforms


 ${
m C_L}$ includes load and stray capacitance Input PRR = 1.0 MHz; ${
m t_w}$ = 500 ns


FIGURE 1. AC Test Circuit

 $\begin{aligned} & \text{Input} = \text{AC Waveform; } t_{\text{r}} = t_{\text{f}} = 1.8 \text{ ns;} \\ & \text{PRR} = 10 \text{ MHz; } \text{Duty Cycle} = 50\% \end{aligned}$

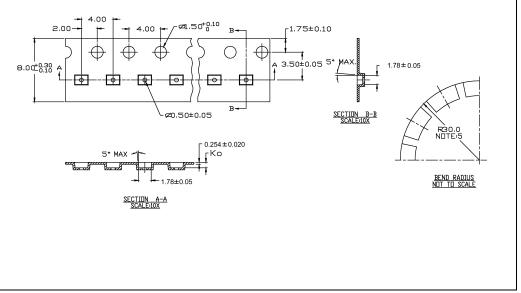
FIGURE 2. I_{CCD} Test Circuit



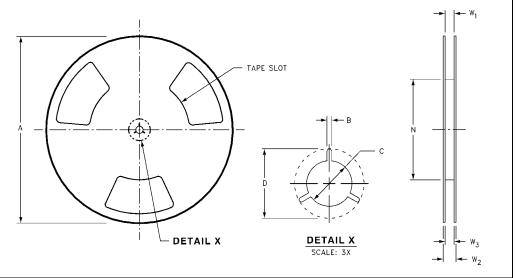
Tape and Reel Specification

Tape Format for US8

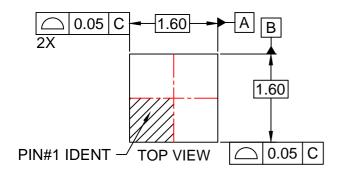
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

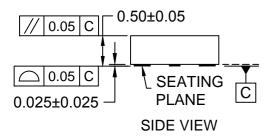

TAPE DIMENSIONS inches (millimeters)

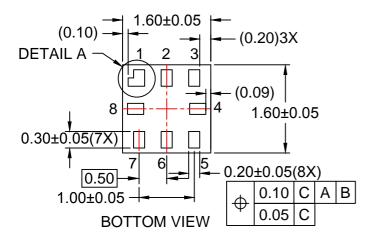
Tape Format for MicroPak

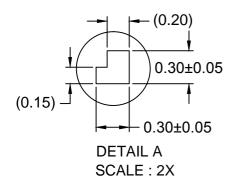

Package	Tape	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
L8X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

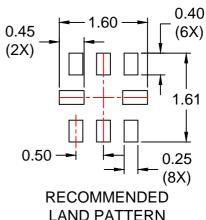
TAPE DIMENSIONS inches (millimeters)

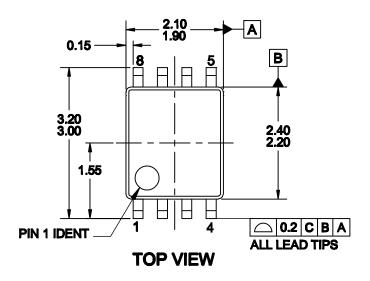



Tape and Reel Specification (Continued)


REEL DIMENSIONS inches (millimeters)

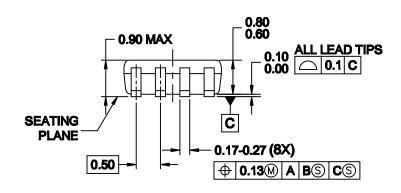


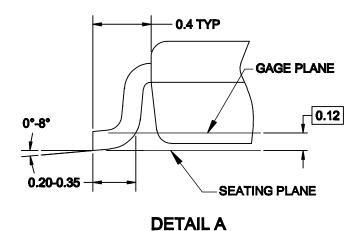

Tape Size	Α	В	С	D	N	W1	W2	W3
Size								
0	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

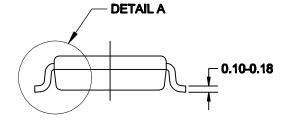



LAND PATTERN

NOTES:


- A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MAC08Arev5.


RECOMMENDED LAND PATTERN



SIDE VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.
- E. FILE DRAWING NAME: MKT-MAB08Arev4

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™

BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

ESBC™ MicroPak™ MicroPak2™ MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor®

MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™

TriFault Detect™ TRUECURRENT®* սSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™

VoltagePlus™ XSTM. Xsens™ 仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

-®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 177