

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix $=$ SCX and SJX.
Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
CPu	Count Up Clock Input (Active Rising Edge)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
CP_{D}	Count Down Clock Input (Active Rising Edge)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
MR	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA
$\overline{T C}_{\text {D }}$	Terminal Count Down (Borrow) Output (Active LOW)	50/33.3	-1 mA/20 mA
$\overline{T C}_{U}$	Terminal Count Up (Carry) Output (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F193 is a 4-bit binary synchronous up/down (reversible) counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.
A LOW-to-HIGH transition on the CP input to each flip-flop causes the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH, as indicated in the Function Table.
The Terminal Count Up ($\overline{\mathrm{TC}}_{\mathrm{U}}$) and Terminal Count Down ($\overline{T C}_{D}$) outputs are normally HIGH. When the circuit has reached the maximum count state 15, the next HIGH-toLOW transition of the Count Up Clock will cause $\overline{\mathrm{TC}}_{U}$ to go LOW. $\overline{T C}_{U}$ will stay LOW until CP_{U} goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{T C}_{D}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

$$
\begin{aligned}
& \overline{\mathrm{TC}}_{\mathrm{U}}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{U}} \\
& \overline{\mathrm{TC}}_{\mathrm{D}}=\overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{D}}
\end{aligned}
$$

The ' F 193 has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data input ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both clock inputs, and latch each Q output in the LOW state.

If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

Function Table					
MR	$\overline{\text { PL }}$	CP $_{\mathbf{U}}$	$\mathbf{C P}_{\mathbf{D}}$	Mode	
H	X	X	X	Reset (Asyn.)	
L	L	X	X	Preset (Asyn.)	
L	H	H	H	No Change	
L	H	-	H	Count Up	
L	H	H	-	Count Down	

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\tau=$ LOW-to-HIGH Clock Transition

State Diagram

Logic Diagram

TL/F/9497-6
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	100	125		75		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P_{\cup}$ or CP_{D} to $\overline{T C}_{U}$ or $\overline{T C}_{D}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{CP} u$ or CP_{D} to Q_{n}	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay P_{n} to Q_{n}	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 4.5 \\ 11.0 \end{gathered}$	$\begin{gathered} 7.0 \\ 14.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 16.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 15.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\text { PL }}$ to Q_{n}	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 11.0 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 14.0 \\ & \hline \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay MR to Q_{n}	5.5	11.0	14.5	5.0	16.0	5.5	15.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay MR to $\overline{T C}_{U}$	6.0	10.5	13.5	5.0	15.0	6.0	14.5	ns
${ }_{\text {tPHL }}$	Propagation Delay MR to $\overline{T C}_{D}$	6.0	11.5	14.5	6.0	16.0	6.0	15.5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{PL}}$ to $\overline{T C}_{U}$ or $\overline{\mathrm{TC}}_{D}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 15.5 \\ 14.5 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 17.5 \end{aligned}$		$\begin{aligned} & 16.5 \\ & 15.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay P_{n} to $\overline{T C}_{U}$ or $\overline{T C}_{D}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	74F		54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW P_{n} to $\overline{P L}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW P_{n} to $\overline{P L}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { PL Pulse Width, LOW }}$	6.0		7.5		6.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	CPu or CPD Pulse Width, LOW	5.0		7.0		5.0		ns
$t_{w}(\mathrm{~L})$	CPu or CP_{D} Pulse Width, LOW (Change of Direction)	10.0		12.0		10.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR Pulse Width, HIGH	6.0		6.0		6.0		ns
$\mathrm{t}_{\text {rec }}$	$\begin{aligned} & \text { Recovery Time } \\ & \text { PL to } \mathrm{CP}_{\mathrm{u}} \text { or } \mathrm{CP} \end{aligned}$	6.0		8.0		6.0		ns
$\mathrm{trec}^{\text {c }}$	Recovery Time MR to CP_{u} or CP_{D}	4.0		4.5		4.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

