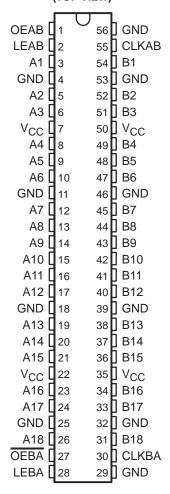
SCBS086C - FEBRUARY 1991 - REVISED JANUARY 1997


- **Members of the Texas Instruments** Widebus™ Family
- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- **UBT**™ (Universal Bus Transceiver) **Combines D-Type Latches and D-Type** Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package **Using 25-mil Center-to-Center Spacings**

description

These 18-bit universal bus transceivers consist of storage elements that can operate either as D-type latches or D-type flip-flops to allow data flow in transparent or clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

SN54ABT16501 . . . WD PACKAGE SN74ABT16501...DGG OR DL PACKAGE (TOP VIEW)

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor and $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing/current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

SN54ABT16501, SN74ABT16501 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

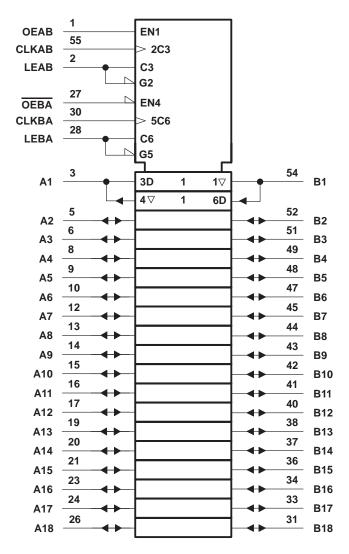
SCBS086C - FEBRUARY 1991 - REVISED JANUARY 1997

description (continued)

The SN54ABT16501 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT16501 is characterized for operation from -40° C to 85° C.

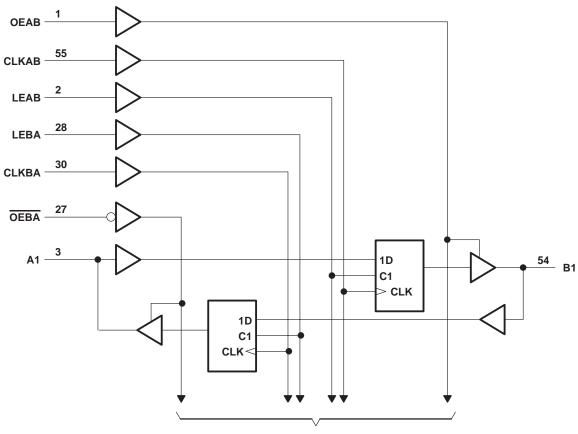
FUNCTION TABLE[†]

	INPUTS						
OEAB	LEAB	CLKAB	Α	В			
L	Χ	Х	Χ	Z			
Н	Н	Χ	L	L			
Н	Н	Χ	Н	Н			
Н	L	\uparrow	L	L			
Н	L	\uparrow	Н	Н			
Н	L	Н	Χ	в ₀ ‡ в ₀ §			
Н	L	L	Χ	в ₀ §			


[†]A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

[§] Output level before the indicated steady-state input conditions were established


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS086C - FEBRUARY 1991 - REVISED JANUARY 1997

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	$-0.5\ V$ to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	$-0.5\ V$ to 7 V
Voltage range applied to any output in the high or power-off state, VO	\dots –0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16501	96 mA
SN74ABT16501	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

			SN54ABT	16501	SN74ABT16501		UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	VIH High-level input voltage				2		V
V _{IL}	V _{IL} Low-level input voltage					0.8	V
VI	V _I Input voltage				0	VCC	V
ІОН	IOH High-level output current			-24		-32	mA
loL	IOL Low-level output current		200	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Dy.	10		10	ns/V
TA	Operating free-air temperature		– 55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT16501, SN74ABT16501 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS086C - FEBRUARY 1991 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		Т	A = 25°C	;	SN54ABT16501		SN74ABT16501		UNIT	
PAI	RAMETER	1251 CO	RUITIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNII	
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		V	
\ _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3			
VOH		V00 = 4.5.V	$I_{OH} = -24 \text{ mA}$	2			2				V	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VOL		V00 - 45 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC = 4.5 V, VCC = 4.5 V, VCC = 5 V, VCC = 4.5 V VCC = 4.5 V VCC = 5.5 V, VCC =	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}					100			2			mV	
1.	Control inputs	V _{CC} = 5.5 V,	V _I = V _{CC} or GND			±1		<u>#</u> 1		±1	μА	
li l	A or B ports		AL = ACC OLOUP			±100		±100		±100	μΛ	
lozh [‡]		$V_{CC} = 5.5 V$,	$V_0 = 2.7 \text{ V}$			50		50		50	μΑ	
loz _L ‡		$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-50	S	-50		- 50	μΑ	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100	90			±100	μΑ	
ICEX			Outputs high			50	d d	50		50	μА	
IO§		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-180	- 50	-180	-50	-180	mA	
		Vcc = 5.5 V,	Outputs high			3		5		3		
Icc	A or B ports	$I_{O} = 0$,	Outputs low			76		76		76	mA	
	V _I = '	$V_I = V_{CC}$ or GND	Outputs disabled			3.3		5.3		3.3		
,,	Control inputs	V _{CC} = 5.5 V, One i	nput at 3.4 V,			5		6		5	mA	
∆ICC¶	A or B ports					1.5		1.5		1.5	IIIA	
Ci	Control inputs	V _I = 2.5 V or 0.5 V			4						pF	
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			8						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			SN54ABT16501		SN74ABT16501		UNIT	
				MIN	MAX	MIN	MAX	UNIT
f _{Clock} Clock frequency, CLKAB or CLKBA					105	0	105	MHz
t# Pulse duration		LEAB or LEBA high	3.3	EW	3.3		ns	
t _W #	Puise duration	LEAB or LEBA high CLKAB or CLKBA high or low		4.7		4.7		115
		A before CLKAB↑ or B before CLKBA1	4 4	2	3.5			
t _{su}	t _{SU} Setup time	A before I EAR or R before I ERA	CLK high	4		4		ns
		CLK lov		1.5		1.5		
th Hold time	A after CLKAB↑ or B after CLKBA↑		& 1		1		ns	
t _h	riola time	A after LEAB↓ or B after LEBA↓		2.5		2.5		113

[#]This parameter is specified by design, but not production tested.

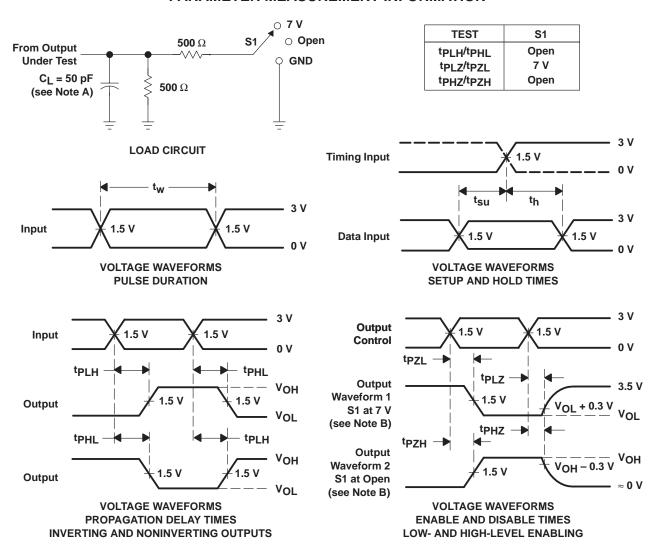
[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] The parameters IOZH and IOZL include the input leakage current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 $[\]P$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT16501, SN74ABT16501 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS


SCBS086C - FEBRUARY 1991 - REVISED JANUARY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)			$V_{CC} = 5 V$, $T_A = 25^{\circ}C$		SN54ABT16501		SN74ABT16501		UNIT
	(1141 01)	(0011 01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}	CLKAB or CLKBA		105	160		105		105		MHz
^t PLH	A or B	B or A	1	2.6	3.4	1	3.9	1	3.7	20
^t PHL		BULA	1	2.6	3.4	1	4.1	1	4	ns
^t PLH	LEAB or LEBA	B or A	1.3	3.3	4.3	1.3	5.4	1.3	5.1	ns
^t PHL		BULA	1.4	3.1	4.1	1.4	4.6	1.4	4.4	115
^t PLH	CLKAB or CLKBA	B or A	1.5	3.5	4.5	1.5	5.3	1.5	5	20
^t PHL	CLNAD OI CLNDA	BULA	1.3	3.1	4.1	1.3	4.6	1.3	4.4	ns
^t PZH	0540 0504	B or A	1	3	4	& 1	4.8	1	4.7	
t _{PZL}	OEAB or OEBA	DULA	2.6	4.9	5.9	2.6	6.6	2.6	6.5	ns
^t PHZ	OEAB or OEBA	B or A	1.6	3.9	4.9	1.6	5.9	1.6	5.8	20
[†] PLZ		DULA	1.1	3.4	4.4	1.1	5.1	1.1	4.9	ns

SCBS086C - FEBRUARY 1991 - REVISED JANUARY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Q} = 50 Ω , t_{f} \leq 2.5 ns, t_{f} \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated