

PAL16R8

20-Pin TTL Programmable Array Logic

The PAL16R8 Family (PAL16L8, PAL16R8, PAL16R6, PAL16R4) includes the PAL16R8-5/4 Series which provides the highest speed in the 20-pin TTL PAL device family, making the series ideal for high-performance applications. The PAL16R8 Family is provided with standard 20-pin DIP and PLCC pinouts and a 28-pin PLCC pinout. The 28-pin PLCC pinout contains seven extra ground pins interleaved between the outputs to reduce noise and increase speed.

The devices provide user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Advanced Micro Devices

PAL16R8 Family

20-Pin TTL Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- As fast as 4.5 ns maximum propagation delay
- Popular 20-pin architectures: 16L8, 16R8, 16R6, 16R4
- Programmable replacement for high-speed TTL logic
- Register preload for testability

- Power-up reset for initialization
- Extensive third-party software and programmer support through FusionPLD partners
- 20-Pin DIP and PLCC packages save space
- 28-Pin PLCC-4 package provides ultra-clean high-speed signals

GENERAL DESCRIPTION

The PAL16R8 Family (PAL16L8, PAL16R8, PAL16R6, PAL16R4) includes the PAL16R8-5/4 Series which provides the highest speed in the 20-pin TTL PAL device family, making the series ideal for high-performance applications. The PAL16R8 Family is provided with standard 20-pin DIP and PLCC pinouts and a 28-pin PLCC pinout. The 28-pin PLCC pinout contains seven extra ground pins interleaved between the outputs to reduce noise and increase speed.

The devices provide user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.

The family allows the systems engineer to implement the design on-chip, by opening fuse links to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

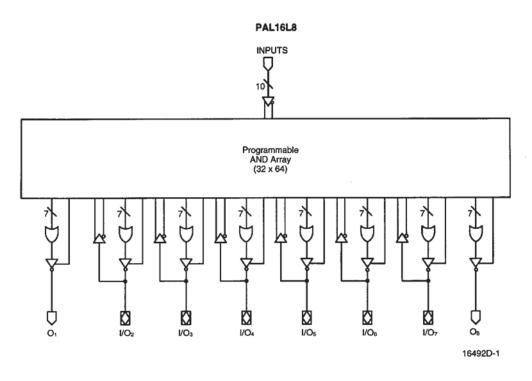
The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array.

The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.

In addition, the PAL device provides the following options:

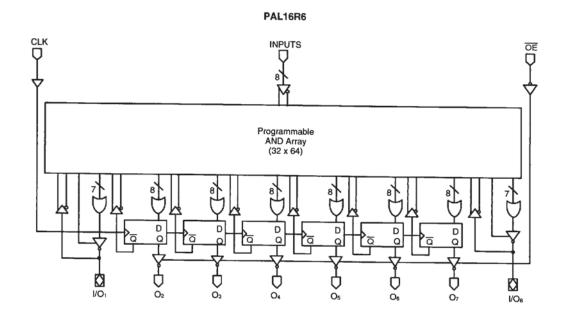
- Variable input/output pin ratio
- Programmable three-state outputs
- Registers with feedback

Product terms with all connections opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state. Registers consist of D-type flip-flops that are loaded on the LOW-to-HIGH transition of the clock. Unused input pins should be tied to Vcc or GND.

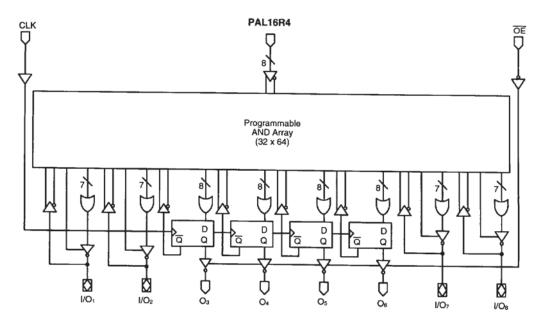

The entire PAL device family is supported by the FusionPLD partners. The PAL family is programmed on conventional PAL device programmers with appropriate personality and socket adapter modules. Once the PAL device is programmed and verified, an additional connection may be opened to prevent pattern readout. This feature secures proprietary circuits.

PRODUCT SELECTOR GUIDE

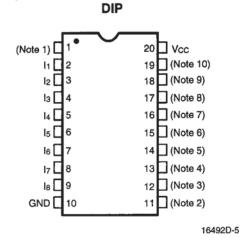
Device	Dedicated Inputs	Outputs	Product Terms/ Output	Feedback	Enable
PAL16L8	10	6 comb. 2 comb.	7 7	1/0	prog. prog.
PAL16R8	8	8 reg.	8	reg.	pin
PAL16R6	8	6 reg. 2 comb.	8 7	reg. I/O	pin prog.
PAL16R4	8	4 reg. 4 comb.	8 7	reg. I/O	pin prog.

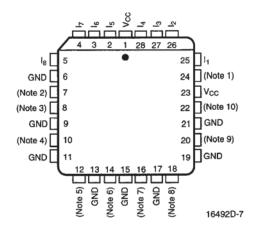

Publication# 16492 Rev. D Amendment/0 Issue Date: February 1996

BLOCK DIAGRAMS

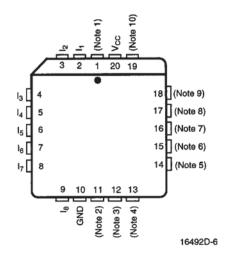


BLOCK DIAGRAMS


16492D-3


16492D-4

CONNECTION DIAGRAMS

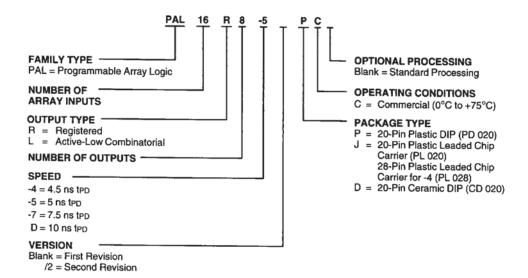

Top View

28-Pin PLCC

20-Pin PLCC

PIN DESIGNATIONS

CLK = Clock
GND = Ground
I = Input
I/O = Input/Output
O = Output
OE = Output Enable
Vcc = Supply Voltage


Note:

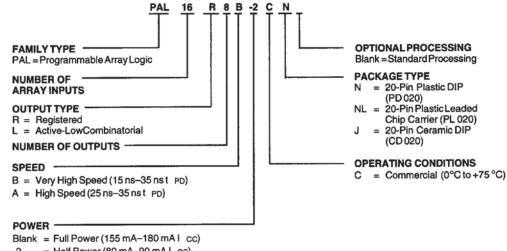
Pin 1 is marked for orientation.

Note	16L8	16R8	16R6	16R4
1	I ₀	CLK	CLK	CLK
2	l ₉	ŌĒ .	ŌE	ŌĒ
3	O ₁	Ot	I/O ₁	I/O ₁
4	I/O ₂	O ₂	O ₂	I/O ₂
5	I/O ₃	O ₃	Оз	O₃
6	I/O ₄	O ₄	O ₄	O ₄
7	I/O ₅	O ₅	O ₅	O ₅
8	I/O ₆	O ₆	O ₆	O ₆
9	I/O ₇	O ₇	O ₇	I/O ₇
10	O ₈	O ₈	I/O ₈	I/O ₈

ORDERING INFORMATION Commercial Products

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid	Combinations
PAL16L8	
PAL16R8	500 510 410
PAL16R6	-5PC, -5JC, -4JC
PAL16R4	PC, JC, DC
PAL16L8-7	
PAL16R8-7	PC IC DC
PAL16R6-7	7 0, 00, 50
PAL16R4-7	
PAL16L8D/2	
PAL16R8D/2	PC, JC
PAL16R6D/2	70,00
PAL16R4D/2	


Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERINGINFORMATION

Commercial Products (MMI Marking Only)

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Blank = Full Power (155 mA-180 mA I cc)
-2 = Half Power (80 mA-90 mA I cc)
-4 = Quarter Power (55 mA Icc)

Valid Combinations								
PAL16L8								
PAL16R8	B B-2 A	011 011 01						
PAL16R6	B, B-2, A, B-4	CN, CNL, CJ						
PAL16R4	1							

Valid Combinations

ValidCombinationslists configurationsplanned to be supported in volume for this device. Consult the localAMD sales office to confirm availability of specific validcombinations and to check on newly released combinations.

Note: Marked with MMI logo.

FUNCTIONAL DESCRIPTION

Standard 20-Pin PAL Family

The standard bipolar 20-pin PAL family devices have common electrical characteristics and programming procedures. Four different devices are available, including both registered and combinatorial devices. All parts are produced with a fuse link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Utilizing an easily-implemented programming algorithm, these products can be rapidly programmed to any customized pattern. Extra test words are preprogrammed during manufacturing to ensure extremely high field programming yields, and provide extra test paths to achieve excellent parametric correlation.

Pinouts

The PAL16R8 Family is available in the standard 20-pin DIP and PLCC pinouts and the PAL16R8-4 Series is available in the new 28-pin PLCC pinout. The 28-pin PLCC pinout gives the designer the cleanest possible signal with only 4.5 ns delay.

The PAL16R8-4 pinout has been designed to minimize the noise that can be generated by high-speed signals. Because of its inherently shorter leads, the PLCC package is the best package for use in high-speed designs. The short leads and multiple ground signals reduce the effective lead inductance, minimizing ground bounce. Placing the ground pins between the outputs optimizes the ground bounce protection, and also isolates the outputs from each other, eliminating cross-talk. This pinout can reduce the effective propagation delay by as much as 20% from a standard DIP pinout. Design files for PAL16R8-4 Series devices are written as if the device had a standard 20-pin DIP pinout for most design software packages.

Variable Input/Output Pin Ratio

The registered devices have eight dedicated input lines, and each combinatorial output is an I/O pin. The PAL16L8 has ten dedicated input lines and six of the eight combinatorial outputs are I/O pins. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

Programmable Three-State Outputs

Each output has a three-state output buffer with three-state control. On combinatorial outputs, a product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin and may be configured as a dedicated input if the output buffer is always disabled. On registered outputs, an input pin controls the enabling of the three-state outputs.

Registered outputs are provided for data storage and synchronization. Registers are composed of D-type flip-flops that are loaded on the LOW-to-HIGH transition of the clock input.

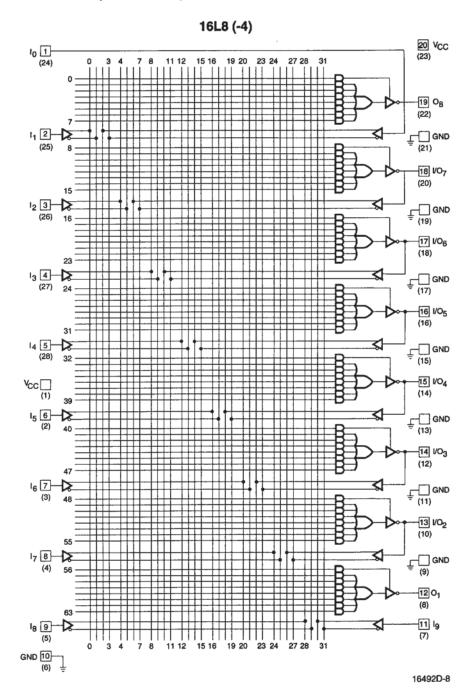
Register Preload

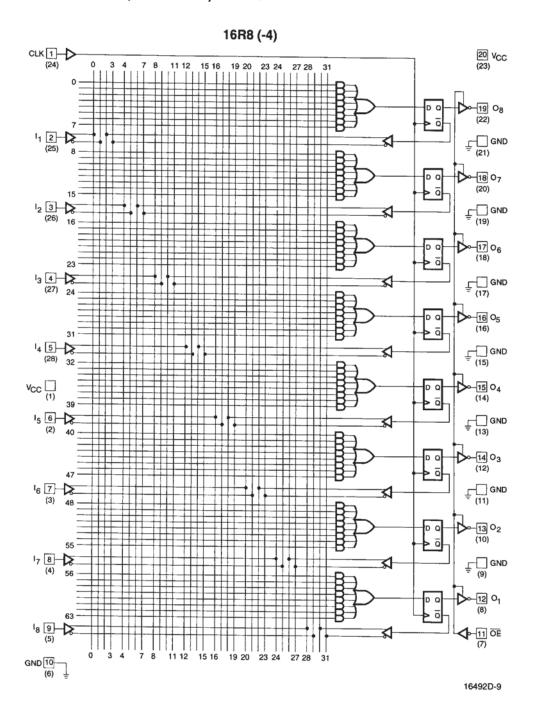
The register on the AMD marked 16R8, 16R6, and 16R4 devices can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

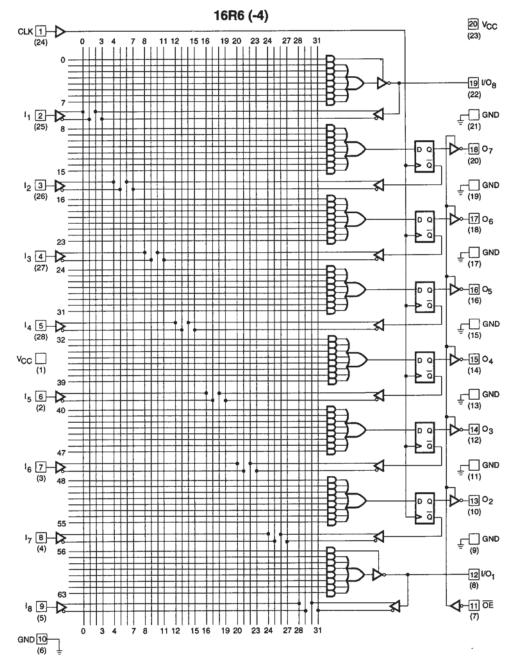
Power-Up Reset

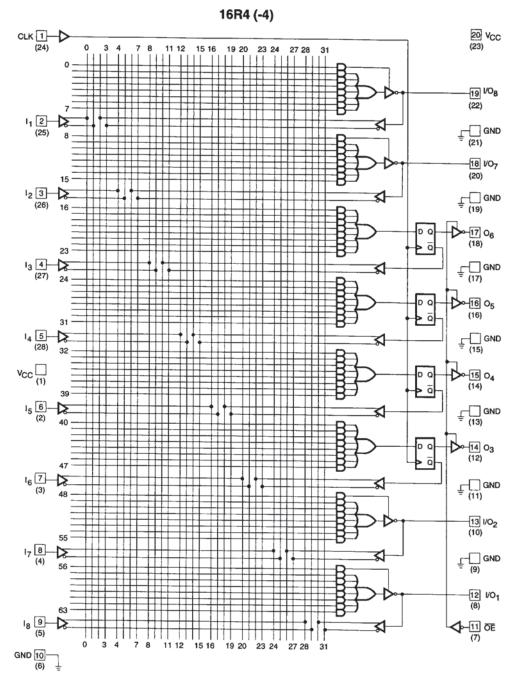
All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PAL16R8 Family will be HIGH due to the active-low outputs. The Vcc rise must be monotonic and the reset delay time is 1000 ns maximum.

Security Fuse


After programming and verification, a PAL16R8 Family design can be secured by programming the security fuse. Once programmed, this fuse defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security fuse is programmed, the array will read as if every fuse is programmed.


Quality and Testability


The PAL16R8 Family offers a very high level of built-in quality. Extra programmable fuses provide a means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.


Technology

The PAL16R8-5, -7 and D/2 are fabricated with AMD's oxide isolated bipolar process. The array connections are formed with highly reliable PtSi fuses. The PAL16R8B, B-2, A and B-4 series are fabricated with AMD's advanced trench-isolated bipolar process. The array connections are formed with proven TiW fuses for reliable operation. These processes reduce parasitic capacitances and minimum geometries to provide higher performance.

16492D-11

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES Commercial (C) Devices

Ambient Temperature (T_A)

Operating in Free Air 0°C to +75°C

Supply Voltage (Vcc)

with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min}$	2.4		٧
Vol	Output LOW Voltage	I _{OL} = 24 mA		0.5	٧
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min		-1.2	٧
lін	Input HIGH Current	V _{IN} = 2.7 V, V∞ = Max (Note 2)		25	μА
l _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max (Note 2)	1	-250	μА
lı .	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max		1	mA
lozh	Off-State Output Leakage Current HIGH	V _{OUT} = 2.7 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μА
lozu	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μА
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-130	mA
Icc	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max		210	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozн).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vouτ = 0.5 V
 has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description				ns	Тур	Unit
Cin	Input Capacitance	CLK, OE	VIN = 2.0 V	Vcc = 5.0 V	8		
Соит	Output Capacitance		V _{OUT} = 2.0 V	T _A = 25°C f = 1 MHz	8	pF	

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

	l [-5		-4		
Parameter Symbol	Parameter D				Min (Note 3)	Max	Min (Note 3)	Max	Unit
t _{PD}	Input or Feed	back to Combinatorial	Output	16L8, 16R8, 16R4	1	5	1	4.5	ns
ts	Setup Time fr	om Input or Feedback	to Clock		4.5		4.5		ns
tн	Hold Time			1	0		0		ns
too	Clock to Outp	ut		1 :	1	4.0	1	3.5	ns
tskewa	Skew Betwee	n Registered Outputs	Registered Outputs (Note 4)			1		0.5	ns
twL	01-1-1-1-1-1	LOW		16R8, 16R6, 16R4	4		4		ns
t _{wH}	Clock Width	HIGH	1004	4		4		ns	
	Maximum Frequency (Note 5)	External Feedback	1/(ts + tco)	1 1	117		125		MHz
fmax		Internal Feedback (fcnt)	1/(ts + tcr) (Note 6)		125	1	125		MHz
		No Feedback	1/(tw+ tw)	1	125		125	3.5 0.5 N N 6.5 5 6.5	MHz
tezx	OE to Output	Enable]	1	6.5	1	6.5	ns
texz	OE to Output	Disable		1	1	5	1	5	ns
tea	Input to Output Product Term	to Output Enable Using		1610 1600	2	6.5	2	6.5	ns
ten	Input to Outpu Product Term	ut Disable Using Control		16L8, 16R6, 16R4	2	5	2	5	ns

- 2. See Switching Test Circuit for test conditions.
- 3. Output delay minimums for tpd, tco, tpzx, tpxz, tex, and tex are defined under best case conditions. Future process improvements may alter these values; therefore, minimum values are recommended for simulation purposes only.
- 4. Skew testing takes into account pattern and switching direction differences between outputs.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.
- t_{CF} is a calculated value and is not guaranteed. t_{CF} can be found using the following equation: t_{CF} = 1/f_{MAX} (internal feedback) – t_S.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with
Power Applied -55°C to +125°C

Supply Voltage with
Respect to Ground -0.5 V to + 7.0 V

DC Input Voltage -1.2 V to + 7.0 V

DC Input Current -30 mA to + 5 mA

DC Output or I/O Pin

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

Voltage -0.5 V to Vcc + 0.5 V Static Discharge Voltage 2001 V

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_A)

Operating in Free Air 0°C to +75°C

Supply Voltage (Vcc)

with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min$	2.4		>
Vol	Output LOW Voltage	I _{OL} = 24 mA		0.5	٧
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min		-1.2	٧
1 _{tH}	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max (Note 2)		25	μА
l _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max (Note 2)		-250	μА
11	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max		1	mA
Іохн	Off-State Output Leakage Current HIGH	V _{OUT} = 2.7 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μА
lozL	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μА
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-130	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA) V _{CC} = Max		180	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of I_{IL} and IozL (or I_IH and IozH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V
 has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Тур	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V	5	
Соит	Output Capacitance	Vouτ = 2.0 V	$T_A = 25^{\circ}C$ f = 1 MHz	8	pF

Note:

 These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	Parameter Description					
tpp		Input or Feedback to		16L8, 16R6,	3	7.5	
	Combinatorial C	Output 1	Output Switching	16R4	3	7	пѕ
ts	Setup Time from	n Input or Feedback to	Clock		7		ns
tн	Hold Time			1	0		ns
tco	Clock to Output			1	1	6.5	ns
tskew	Skew Between	Registered Outputs (N	gistered Outputs (Note 4)			1	ns
tw.	Clock Width	LOW	LOW		5		ns
twн		HIGH		1	5		ns
	Maximum	External Feedback	1/(ts + tco)]	74		MHz
fmax	Frequency (Note 5)	Internal Feedback (f _{CNT})	1/(ts + tcF) (Note 6)		100		MHz
		No Feedback	1/(tw+ + twL)		100		MHz
tezx	OE to Output Er	nable		1	1	8	ns
texz	OE to Output Di	sable			1	8	ns
tea	Input to Output i	Enable Using Product	Term Control	16L8, 16R6,	3	10	ns
ten	Input to Output I	Disable Using Product	Term Control	16R4	3	10	ns

- 2. See Switching Test Circuit for test conditions.
- Output delay minimums for t_{PD}, t_{CO}, t_{PZX}, t_{PXZ}, t_{EX}, and t_{ER} are defined under best case conditions. Future process improvements
 may alter these values; therefore, minimum values are recommended for simulation purposes only.
- 4. Skew is measured with all outputs switching in the same direction.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.
- t_{CF} is a calculated value and is not guaranteed. t_{CF} can be found using the following equation: t_{CF} = 1/f_{MAX} (internal feedback) – t_S.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with
Power Applied -55°C to +125°C

Supply Voltage with
Respect to Ground -0.5 V to + 7.0 V

DC Input Voltage -1.5 V to + 5.5 V

DC Output or I/O Pin Voltage -0.5 V to + 5.5 V

Static Discharge Voltage 2001 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_A)
Operating in Free Air 0°C to +75°C
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HiGH Voltage	I _{OH} = -3.2 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min	2.4		٧
Vol	Output LOW Voltage	I _{OL} = 24 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min		0.5	٧
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min		-1.5	٧
lін	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max (Note 2)		25	μΑ
l _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max (Note 2)		-250	μА
l ₁	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max		100	μΑ
Іогн	Off-State Output Leakage Current HIGH	V _{OUT} = 2.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μА
lozu	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μА
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max (Note 3)	-30	-130	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max		180	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozн).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Condition	Test Conditions		Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V	5	
Соит	Output Capacitance	V _{OUT} = 2.0 V	T _A = 25°C f = 1 MHz	8	рF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Descr	Parameter Description				Max	Unit
t _{PD}	Input or Feedback	to Combinatorial Outpu	ıt	16L8, 16R6, 16R4	3	10	ns
ts	Setup Time from I	nput or Feedback to Clo	out or Feedback to Clock				ns
t _H	Hold Time						ns
tco	Clock to Output			1	3	7	ns
twL	Clock Width	LOW	LOW		8		ns
twн		HIGH		16R8, 16R6,	8		ns
	Maximum	External Feedback	1/(ts + tco)	16R4	58.8		MHz
f _{MAX}	Frequency (Note 4)	Internal Feedback (fcnt)	1/(ts + tcr) (Note 5)	1	60		MHz
		No Feedback	1/(tw+ twL)	1	62.5		MHz
tpzx	OE to Output Ena	ble		1	2	10	ns
tpxz	OE to Output Disa	Disable]	2	10	ns
tea	Input to Output Er	out to Output Enable Using Product Term Control		16L8, 16R6,	3	10	ns
ter	Input to Output Di	sable Using Product Ter	m Control	16R4	3	10	ns

- 2. See Switching Test Circuit for test conditions.
- 3. Output delay minimums for t_{PO}, t_{CO}, t_{PZX}, t_{PXZ}, t_{EX}, and t_{ER} are defined under best case conditions. Future process improvements may alter these values; therefore, minimum values are recommended for simulation purposes only.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.
- t_{CF} is a calculated value and is not guaranteed. t_{CF} can be found using the following equation: t_{CF} = 1/f_{MAX} (internal feedback) – t_S.

^{1.} These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

 Storage Temperature
 −65°C to +150°C

 Ambient Temperature with
 −55°C to +125°C

 Power Applied
 −55°C to +125°C

 Supply Voltage with
 −0.5 V to +7.0 V

 DC Input Voltage
 −1.5 V to Vcc + 0.5 V

 DC Output or I/O Pin

 Voltage
 −0.5 V to Vcc + 0.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_A)
Operating in Free Air 0°C to +75°C

Supply Voltage (Vcc)

with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	I _{OH} = -3.2 mA	VIN = VIH OF VIL VCC = Min	2.4		٧
Vol	Output LOW Voltage	I _{OL} = 24 mA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min$		0.5	٧
VIH	Input HIGH Voltage	Guaranteed Input Lo Voltage for all Inputs		2.0		٧
VIL	Input LOW Voltage		Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min			-1.2	٧
Iн	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = M	V _{IN} = 2.4 V, V _{CC} = Max (Note 2)		25	μА
lıL	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = M	ax (Note 2)		-250	μА
l ₁	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = M	lax		100	μА
Гоzн	Off-State Output Leakage Current HIGH	Vout = 2.4 V, Vcc = V _{IN} = V _{IH} or V _{IL} (Note			100	μА
lozu	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = V _{IN} = V _{IH} or V _{IL} (Note			-100	μА
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc =	Max (Note 3)	-30	-130	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs O V _{CC} = Max	pen (lout = 0 mA)		180	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Тур	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V	8	
Соот	Output Capacitance	V _{OUT} = 2.0 V	T _A = 25 °C f = 1 MHz	9	pF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	scription			Min	Max	Unit
tpp	Input or Feedba	ack to Combinatorial Outpu	k to Combinatorial Output			15	ns
ts	Setup Time from	Input or Feedback to Clock			15		ns
tн	Hold Time		1 1	0		ns	
t∞	Clock to Output	or Feedback	1 1		12	ns	
twL	Clock Width	LOW		1 1	10		ns
twн		HIGH		16R8, 16R6, 16R4	10		ns
fmax	Maximum Frequency	External Feedback	1/(ts + tco)	1	37		MHz
IMAX	(Note 3)	No Feedback	1/(tw+ + twL)]	50		MHz
tezx	OE to Output Er	nable		1 1		15	ns
texz	OE to Output Di	sable		1		15	ns
tea	Input to Output	Enable Using Product Ten	nable Using Product Term Control			15	ns
ter	Input to Output	Disable Using Product Ter	m Control	16R8,16R6, 16R4		15	ns

- 2. See Switching Test Circuit for test conditions.
- These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with
Power Applied -55°C to +125°C

Supply Voltage with
Respect to Ground -0.5 V to +7.0 V

DC Input Voltage -1.5 V to Vcc + 0.5 V

DC Output or I/O Pin

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

Voltage -0.5 V to Vcc + 0.5 V

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_A)
Operating in Free Air 0°C to +75°C
Supply Voltage (Vcc)

with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	I _{OH} = -3.2 mA	2.4		٧
Vol	Output LOW Voltage	IoL = 24 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min		0.5	٧
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min		-1.2	٧
lıн	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max (Note 2)		25	μА
l _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max (Note 2)		-100	μА
l ₁	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max		100	μА
Іогн	Off-State Output Leakage Current HIGH	V _{OUT} = 2.7 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μА
lozı	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μА
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-130	mA
loc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA) V _{CC} = Max		90	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout = 0.5 V
 has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Тур	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V	7	
Соит	Output Capacitance	V _{OUT} = 2.0 V	T _A = 25°C f = 1 MHz	7	рF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	cription			Min	Max	Unit
tpD	Input or Feedbac	ck to Combinatorial Outpu	ut	16L8, 16R6, 16R4		25	ns
ts	Setup Time from	Input or Feedback to Clock			25		ns
tн	Hold Time			7	0		ns
tco	Clock to Output					15	ns
twL	Clock Width	LOW			15		ns
twn		HIGH		16R8, 16R6, 16R4	15		ns
	Maximum	External Feedback	1/(ts + tco)		25		MHz
f _{MAX}	Frequency (Note 4)	Internal Feedback (fсмт)	1/(ts + tcr) (Note 5)		28.5		MHz
		No Feedback	1/(tw+ + twL)		33		MHz
tezx	OE to Output En	nable			20	ns	
texz	OE to Output Dis	sable		7		20	ns
tea	Input to Output E	Enable Using Product Ter	m Control	16R8, 16R6,		25	ns
ten	Input to Output I	Disable Using Product Ter	rm Control	16R4		25	ns

- 2. See Switching Test Circuit for test conditions.
- 3. Calculated from measured f_{MAX} internal.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- t_{CF} is a calculated value and is not guaranteed. t_{CF} can be found using the following equation: t_{CF} = 1/f_{MAX} (internal feedback) – t_S.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

AMD.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with
Power Applied -55°C to +125°C

Supply Voltage with
Respect to Ground -0.5 V to + 7.0 V

DC Input Voltage -1.5 V to V_{CC} + 0.5 V

DC Output or I/O Pin

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

Voltage -0.5 V to Vcc + 0.5 V

OPERATING RANGES

Commercial (C) Devices

Supply Voltage (Vcc) with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Descripti	on	Test Condition	s	Min	Max	Unit
V _{OH}	Output HIGH Voltage		I _{OH} = -3.2 mA	V _{IN} = V _{IH} or V _{IL} V _{CC} = Min	2.4		٧
Vol	Output LOW Voltage		loL = 24 mA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min$		0.5	٧
V _{IH}	Input HIGH Voltage		Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		٧
VIL	Input LOW Voltage		Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	٧
Vı	Input Clamp Voltage		I _{IN} = -18 mA, V ₀	c = Min		-1.2	٧
lгн	Input HIGH Current	Input HIGH Current		V _{IN} = 2.7 V, V _{CC} = Max (Note 2)		25	μА
I _{IL}	Input LOW Current		V _{IN} = 0.4 V, V _{CC} = Max (Note 2)			-250	μА
l ₁	Maximum Input Curre	ent	V _{IN} = 5.5 V, V _{CC} = Max			100	μА
lozh	Off-State Output Leal Current HIGH	age	V _{OUT} = 2.7 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)			100	μA
lozu	Off-State Output Leal Current LOW	cage	V _{OUT} = 0.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)			-100	μА
Isc	Output Short-Circuit (Current	V _{OUT} = 0.5 V, V _{CC} = Max (Note 3)		-30	-130	mA
loc	Supply Current	16L8 16R8/6/4	V _{IN} = 0 V, Outpu V _{CC} = Max	ts Open (lout = 0 mA)		155 180	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and I_{OZH}).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vcc = 0.5 V
 has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Тур	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V	7	
Cout	Output Capacitance	Vout = 2.0 V	T _A = 25°C f = 1 MHz	7	pF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Des	cription			Min	Max	Unit
tpp	Input or Feedba	ck to Combinatorial Outpo	ut	16L8, 16R6, 16R4		25	пѕ
ts	Setup Time from	Input or Feedback to Clo	ock		25		ns
tн	Hold Time						nş
tco	Clock to Output					15	ns
tw∟	Clock Width	LOW	LOW		15		ns
twn		HIGH		1	15		ns
	Maximum	External Feedback	1/(ts + tco)	16R8, 16R6, 16R4	25		MHz
fmax	Frequency (Note 4)	Internal Feedback (fcnt)	1/(ts + tcr) (Note 5)	1	28.5		MHz
		No Feedback	1/(tw+ + twL)	7	33		MHz
tpzx	OE to Output En	nable				20	ns
texz	OE to Output Dis	Disable				20	лѕ
tea	Input to Output E	Input to Output Enable Using Product Term Control				25	ns
tea	Input to Output [Disable Using Product Te	rm Control	16R4		25	ns

- 2. See Switching Test Circuit for test conditions.
- 3. Calculated from measured f_{MAX} internal.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- t_{CF} is a calculated value and is not guaranteed. t_{CF} can be found using the following equation: t_{CF} = 1/f_{MAX} (internal feedback) – t_S.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with
Power Applied -55°C to +125°C

Supply Voltage with
Respect to Ground -0.5 V to +7.0 V

DC Input Voltage -1.5 V to +5.5 V

DC Output or I/O Pin Voltage 5.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_A)

Operating in Free Air 0°C to +75°C

Supply Voltage (Vcc)

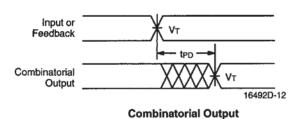
with Respect to Ground +4.75 V to +5.25 V

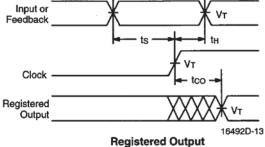
Operating ranges define those limits between which the functionality of the device is guaranteed.

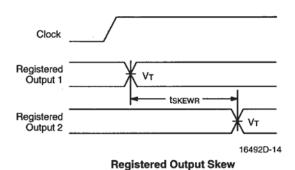
DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

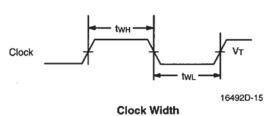
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	$I_{OH} = -1 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min}$	2.4		٧
Vol	Output LOW Voltage	$I_{OL} = 8 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min}$		0.5	٧
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	٧
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min		-1.5	V
l _{IH}	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max (Note 2)		25	μА
lı∟	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max (Note 2)		-250	μА
lı	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max		100	μА
lozн	Off-State Output Leakage Current HIGH	V _{OUT} = 2.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μА
l _{OZL}	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μА
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max (Note 3)	-30	-250	mA
Icc	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max		55	mA

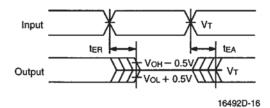
- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and I_{OZH}).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 VOUT = 0.5 V as been chosen to avoid test problems caused by tester ground degradation.

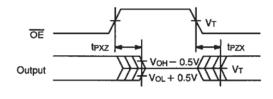



SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)


Parameter Symbol	Parameter Desc	cription			Min	Max	Unit
t _{PD}	Input or Feedba	ck to Combinatorial Outpu	to Combinatorial Output			35	ns
ts	Setup Time from	Input or Feedback to Clo		35		ns	
tн	Hold Time] [0		ns	
tco	Clock to Output	or Feedback	16R8, 16R6,		25	ns	
twL	Clock Width	LOW	LOW		25		ns
twн	<u> </u>	HIGH		1 1	25		ns
fmax	Maximum Frequency	External Feedback	1/(ts + tco)] [16		MHz
	(Note 2)	No Feedback	1/(tw+ + twL)		20		MHz
tpzx	OE to Output En	able		1 [25	ns
texz	OE to Output Di	sable		1 1		25	ns
tEA	Input to Output E	Enable Using Product Ter	nable Using Product Term Control			35	ns
ter	Input to Output [Disable Using Product Ter	rm Control	16R4		35	ns

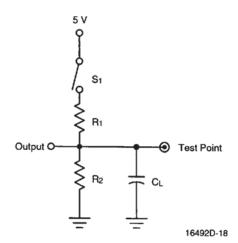

- 1. See Switching Test Circuit for test conditions.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.


SWITCHING WAVEFORMS



Input to Output Disable/Enable

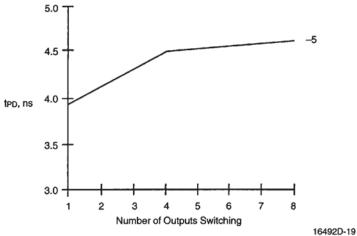
16492D-17 **OE** to Output Disable/Enable

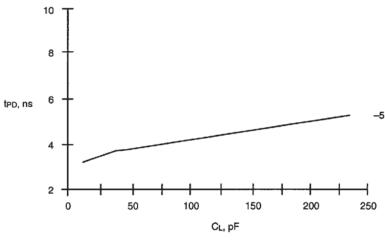

- 1. VT = 1.5 V
- 2. Input pulse amplitude 0 V to 3.0 V
 3. Input rise and fall times 2 ns-3 ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
>>	Does Not Apply	Center Line is High- Impedance "Off" State

KS000010-PAL

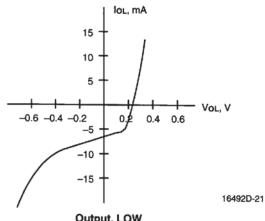

SWITCHING TEST CIRCUIT


Specification	S ₁		Commercial		Measured
		CL	Ri	R ₂	Output Value
tpp, tco	Closed		All but B-4:	All but B-4:	1.5 V
tpzx, tea	$Z \rightarrow H$: Open $Z \rightarrow L$: Closed	50 pF	200 Ω	390 Ω	1.5 V
texz, ten	H → Z: Open L → Z: Closed	5 pF	B-4: 800 Ω	B-4: 1.56 kΩ	H → Z: V _{OH} − 0.5 V L → Z: V _{OL} + 0.5 V

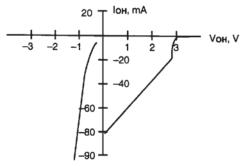
MEASURED SWITCHING CHARACTERISTICS for the PAL16R8-5

 $V_{CC} = 4.75 \text{ V, } T_A = 75^{\circ}\text{C (Note 1)}$

tPD vs. Number of Outputs Switching

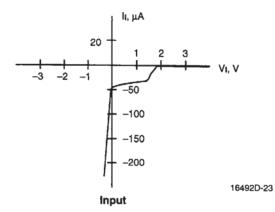

16492D-20

t_{PD} vs. Load Capacitance $V_{CC} = 5.25 \text{ V, } T_A = 25^{\circ}\text{C}$

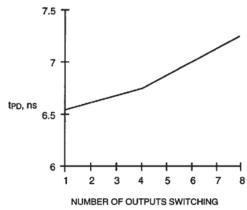

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where tpD may be affected.

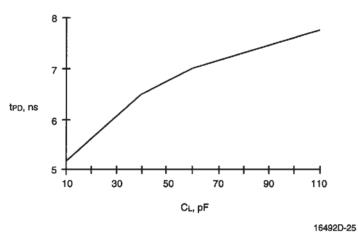
CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS for the PAL16R8-4/5 $Vcc = 5.0 \text{ V}, T_A = 25^{\circ}C$



Output, LOW

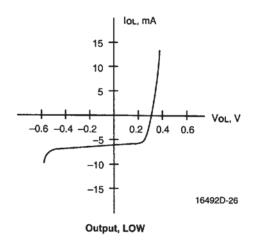

16492D-22

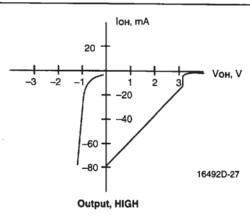
Output, HIGH

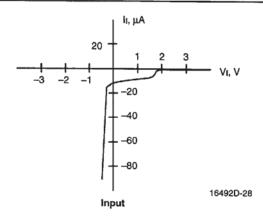

MEASURED SWITCHING CHARACTERISTICS for the PAL16R8-7

Vcc = 4.75 V, TA = 75°C (Note 1)

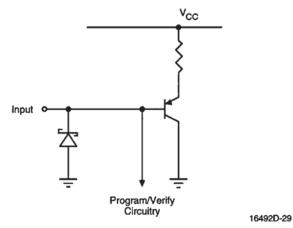
16492D-24

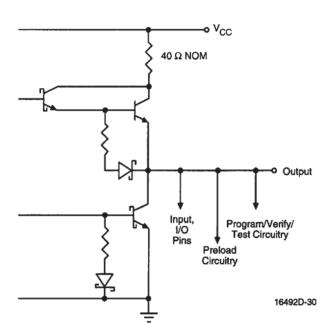

tpp vs. Number of Outputs Switching




tpp vs. Load Capacitance

Note:

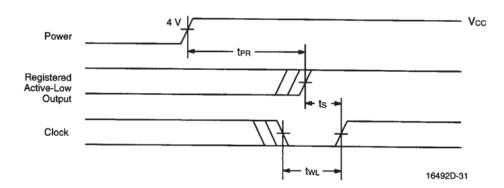

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where tpp may be affected.



INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typical Input

Typical Output


POWER-UP RESET

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will be HIGH due to the inverting output buffer. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways

Vcc can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- The Vcc rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Max	Unit		
tpR	Power-Up Reset Time	1000	ns		
ts	Input or Feedback Setup Time	See S	See Switching		
tw∟	Clock Width LOW		See Switching Characteristics		

Power-Up Reset Waveform