General Description

Applications

The MAX3953 is a 9.953Gbps/10.3125Gbps 1:16 deserializer with clock recovery for 10Gbps Ethernet and OC192 SONET applications. The integrated phaselocked loop (PLL) recovers a clock from the serial data input, and the data is then retimed and demultiplexed into 16 parallel LVDS outputs. Using Maxim's SiGe bipolar process, the MAX3953 can achieve 0.75UI of high-frequency jitter tolerance comprised of 0.50UI of deterministic jitter and 0.25UI of random jitter.

The MAX3953 includes TTL-compatible loss-of-lock (LOL) and sync-error (SYNC_ERR) indicators that allow the user to verify that the part has locked on to incoming data. In case the incoming data becomes invalid, a clock holdover function is provided to maintain a valid reference clock to the upstream device. For proper operation, a reference clock of baud rate/64 or baud rate/16 is required.

The MAX3953 operates from a single +3.3V power supply and typically dissipates 1.5W. The operating temperature range is from 0°C to +85°C. The MAX3953 is available in a 68-pin QFN package.

10Gbps Ethernet LAN 10Gbps Ethernet WAN Add/Drop Multiplexers Digital Cross-Connects

__Features

Serial Data Rate: 9.953Gbps/10.3125Gbps

- Clock Recovery with 1:16 Demultiplexer
- ♦ 0.75UIP-P High-Frequency Jitter Tolerance
- ♦ 16-Bit Parallel LVDS Output
- OIF-Compliant Parallel Interface
- ♦ Loss-of-Lock (LOL) Indicator
- Differential Input Range: 100mVp-p to 1.2Vp-p
- Clock Holdover
- Reference Clock: Baud Rate/64 or Baud Rate/16
- ♦ Temperature Range: 0°C to +85°C
- ♦ 10mm × 10mm 68-Pin QFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3953UGK	0°C to +85°C	68 QFN (10mm × 10mm)

Pin Configuration and Functional Diagram appear at end of data sheet.

Typical Operating Circuit

///XI///

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})0.5V to +5.0V
Input Voltage Levels
(SDI+, SDI-)(V _{CC} - 1.0V) to (V _{CC} + 0.5V)
LVDS Output Voltage Levels
(PDO[150]±, PCLKO+, PCLKO-)0.5V to (V _{CC} + 0.5V)
Voltage at LOL, SYNC_ERR, RATESET, CLKSEL, REFCLK+,
REFCLK-, REFSET, LOS_IN, FIL0.5V to (V _{CC} + 0.5V)

Continuous Power Dissipation ($T_A = 85^{\circ}C$)
68-Lead QFN (derate 30.3mW/°C above +85°C)2.5W
Operating Temperature Range 0°C to +85°C
Storage Temperature Range55°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Processing Temperature (die)+400°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = 0^{\circ}C \text{ to } +85^{\circ}C.$ Typical values are at +3.3V and $T_A = +25^{\circ}C$, unless otherwise noted.)

				MAX	UNITS
		•			
Icc			476	580	mA
OI-) Figure 1					
VID	AC-coupled or DC-coupled input	100		1200	mVP-P
	DC-coupled	V _{CC} - 0.3		V _{CC}	V
RIN		40	50	60	Ω
CLK+, REF	CLK-) (Note 1)	•			
	AC-coupled or DC-coupled input	300		1600	mVP-P
		V _{CC} - 1.16		V _{CC} - 0.88	V
		V _{CC} - 1.81		V _{CC} - 1.48	V
			V _{CC} - 1.3		V
			2.6		kΩ
50]±, PCL	KO±)	•			
V _{OH}				1.475	V
Vol		0.925			V
V _{OD}		250		400	mV
∆V _{OD}				25	mV
Vod		1.125		1.275	V
ΔV _{OD}				25	mV
		80		140	Ω
	Short together or short to GND			20	mA
	DI-) Figure 1 VID RIN FCLK+, REF 50]±, PCLI VOH VOH VOL VOD ∆VOD VOD	VID AC-coupled or DC-coupled input DC-coupled DC-coupled RIN AC-coupled or DC-coupled input FCLK+, REFCLK-) (Note 1) AC-coupled or DC-coupled input AC-coupled or DC-coupled input Image: state sta	bit Figure 1 100 VID AC-coupled or DC-coupled input 100 DC-coupled Vcc - 0.3 Vcc - 0.3 RIN 40 FCLK+, REFCLK-) (Note 1) 300 AC-coupled or DC-coupled input 300 V _{CC} - 1.16 V _{CC} - 1.16 V _{CC} - 1.81 Vcc - 1.81 VOH 0.925 VOH 250 I ΔV _{OD} I 1.125 I ΔV _{OD} I 80	VID AC-coupled or DC-coupled input 100 DC-coupled VCC - 0.3 0.3 RIN 40 50 CLK+, REFCUK-) (Note 1) AC-coupled or DC-coupled input 300 CLK+, REFCUK-) (Note 1) VCC - 1.16 VCC - 1.81 AC-coupled or DC-coupled input 300 VCC - 1.16 VCC - 1.81 VCC - 1.33 - VOH VCC - 1.3 2.6 SUJ+, PCLKD+ 0.925 - VOH 0.925 - VOD 250 - IAVOD 1.125 - IAVOD . . VOD . . VOD . . IAVOD . .	b) Figure 1 Image: Market Marke

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = 0^{\circ}C \text{ to } +85^{\circ}C.$ Typical values are at +3.3V and $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS			
LVTTL INPUT AND OUTPUT (CLKSEL, SYN_ERR, RATESET, LOS_IN, LOL, REFSET)									
LVTTL Input High Voltage	VIH		2			V			
LVTTL Input Low Voltage	VIL				0.8	V			
LVTTL Input Current			-50		+6	μA			
LVTTL Output High Voltage	V _{OH}	I _{OH} = 20μA	2.4		V _{CC}	V			
LVTTL Output Low Voltage	Vol	$I_{OL} = 1mA$			0.4	V			

Note 1: Reference clock duty cycle can range from 30% to 70%.

AC ELECTRICAL CHARACTERISTICS

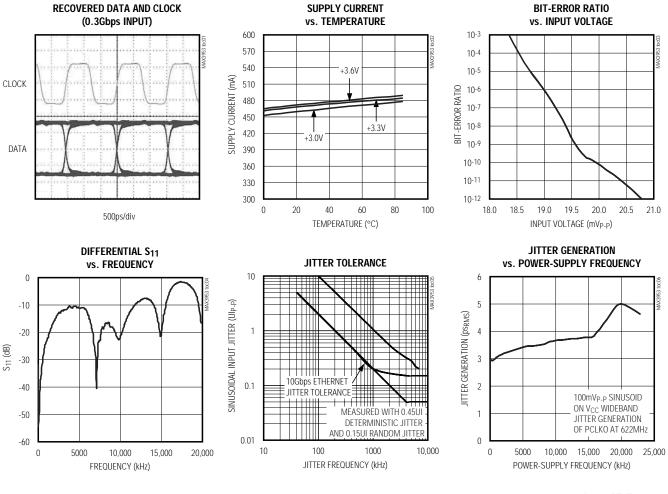
 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = 0^{\circ}C \text{ to } +85^{\circ}C.$ Typical values are at +3.3V and $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Sorial Input Data Data		RATESET = GND		9.953		Chos
Serial Input Data Rate		$RATESET = V_{CC}$		10.3125		Gbps
Sinusoidal Jitter Tolerance		f = 400kHz (Notes 3, 4)	1.5			UIP-P
		f = 4MHz (Note 3)	0.15			UIP-P
Tolerated Consecutive Identical Digits		Bit-error ratio (BER) = 10-12		2000		Bits
		f < 10GHz, differential		10		
Input Return Loss		f < 15GHz, differential		8		dB
		f < 15GHz, common mode		9		
Frequency Difference when PLL Indicates Out of Lock				1000		ppm
Frequency Difference when PLL Indicates In Lock				500		ppm
LOL Assert Time		No transitions at input, Figure 2		30	100	μs
PLL Acquisition Time		Valid transitions at input, Figure 2			100	μs
Maximum PCLKO Deviation from REFCLK					2500	ppm
Output Clock to Data Delay	tclk-Q	Figure 3	-150		+150	ps
Output Clock Duty Cycle			45	50	55	%

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.0V to +3.6V, T_A = 0°C to +85°C. Typical values are at +3.3V and T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Clock and Data Rise/Fall Time	t _R , t _F	20% to 80%	100		250	ps
LVDS Differential Skew	tskew1	Any differential pair			50	ps
LVDS Channel-to-Channel Skew	tskew2	PDO[150]±			100	ps


Note 2: Guaranteed by design and characterization for $T_A = 0^{\circ}C$ to +85°C.

Note 3: Measured with 0.45UI_{P-P} deterministic jitter and 0.15UI_{P-P} random jitter, on top of the specified sinusoidal jitter in a 2³¹ - 1 PRBS pattern with a BER = 10⁻¹².

Note 4: The jitter tolerance exceeds IEEE 802.3AE specifications. The jitter tolerance outperforms the instrument's measurement capability.

Typical Operating Characteristics

_____Pin Description

PIN	NAME	FUNCTION
1, 4, 5, 6, 14, 17, 18, 34, 35, 51, 52, 60, 68	GND	Ground
2	REFCLK+	Positive Reference Clock Input, LVPECL. Connect a baud rate/64 or baud rate/16 reference clock.
3	REFCLK-	Negative Reference Clock Input, LVPECL. Connect a baud rate/64 or baud rate/16 reference clock.
7	REFSET	Reference Clock Select Input, TTL. When the reference clock is baud rate/64, set REFSET to GND. When the reference clock is baud rate/16, set REFSET to V_{CC} .
8, 11, 12, 13, 15, 16, 27, 42, 59, 66	V _{CC}	+3.3V Supply Voltage
9	SDI+	Positive Serial Data Input, CML. 9.953Gbps/10.3125Gbps serial data stream.
10	SDI-	Negative Serial Data Input, CML. 9.953Gbps/10.3125Gbps serial data stream.
19	LOS_IN	Loss-of-Signal Input, TTL. The $\overline{\text{LOS}_{IN}}$ is an external input. Clock holdover is activated when $\overline{\text{LOS}_{IN}}$ is TTL low. Connect to V _{CC} if $\overline{\text{LOS}}$ input is not available. See the <i>Acquisition Controls</i> section.
20	LOL	Loss-of-Lock Indicator Output, TTL. <u>LOL</u> signals a TTL low when the VCO frequency is more than 1000ppm from the reference clock frequency. <u>LOL</u> signals a TTL high when the VCO frequency is within 500ppm of the reference clock frequency. See the <i>Acquisition Controls</i> section.
21	PCLKO+	Positive Parallel Clock Output, LVDS
22	PCLKO-	Negative Parallel Clock Output, LVDS
23, 25, 28, 30, 32, 36, 38, 40, 43, 45, 47, 53, 55, 57, 61, 63	PDO15+ to PDO0+	Positive Parallel Data Outputs, LVDS
24, 26, 29, 31, 33, 37, 39, 41, 44, 46, 48, 54, 56, 58, 62, 64	PDO15- to PDO0-	Negative Parallel Data Outputs, LVDS
49	SYNC_ERR	Synchronization Error Output, TTL. SYNC_ERR is intended to drive CLKSEL for aquisition. See the <i>Acquisition Controls</i> section.
50	CLKSEL	Output Clock Selector, TTL. CLKSEL is the control input for aquisition. When CLKSEL = GND, PCLKO is derived from the input data. When CLKSEL = V_{CC} , PCLKO is derived from the reference clock.
65	RATESET	Serial Data Rate Select Input, TTL. When the input serial data stream is 9.953Gbps, set RATESET to GND. When the input serial data stream is 10.312Gbps, set RATESET to V _{CC} .
67	FIL	PLL Loop Filter Capacitor Input. A capacitor between this pin and V_{CC} sets the loop to zero. A 0.047 μ F capacitor is recommended.
EP	Exposed Pad	Ground. This must be soldered to the circuit board ground for proper thermal and electrical performance. See the <i>Layout Considerations</i> section.

Detailed Description

The MAX3953 deserializer with clock recovery converts 9.953Gbps/10.3125Gbps serial data into 16-bit wide, 622Mbps/644Mbps parallel data. The device combines a fully integrated phase-locked loop (PLL), TTL-compatible status monitors, input amplifier, data retiming block, 16-bit demultiplexer, clock dividers, and LVDS output buffers. The PLL consists of a phase/frequency detector (PFD), a loop filter, and voltage-controlled oscillator (VCO). The PLL recovers the serial clock from the input data stream and retimes the data. The demultiplexer generates a 16-bit-wide 622Mbps/644Mbps parallel data output. The MAX3953 is designed to deliver the best jitter performance by using differential signal architecture and low-noise design techniques.

Input Amplifier

The serial data input (SDI) amplifier accepts differential input amplitudes from 100mV_{P-P} to 1200mV_{P-P}.

Phase-Frequency Detector

The digital phase-frequency detector (PFD) aids frequency acquisition during startup conditions. Depending on the polarity of the frequency input difference between REFCLK and the VCO clock, the PFD drives the VCO until the frequency difference is reduced to zero. False locking is eliminated by this digital phase-frequency detector.

The data phase detector is optimized to achieve 0.75UI high-frequency jitter tolerance.

Loop Filter and VCO

The phase detector and frequency detector outputs are summed into the loop filter. A 0.047μ F capacitor (C_F) is required to set the PLL damping ratio. The loop filter output controls the on-chip VCO.

Loss-of-Lock Monitor

A loss-of-lock (LOL) monitor is included in the MAX3953 frequency detector. A loss-of-lock condition is signaled with a TTL low. When the PLL is frequency locked, LOL switches to TTL high in approximately 56µs.

LOL signals a TTL low when the VCO frequency is more than 1000ppm from the reference clock frequency. LOL signals a TTL high when the VCO frequency is within 500ppm of the reference clock frequency.

Low-Voltage Differential Signal (LVDS) Outputs

The MAX3953 features LVDS outputs for interfacing with high-speed circuitry. The LVDS standard is based on the IEEE 1596.3 LVDS specification. This technology uses 500mVP-P to 800mVP-P differential low-voltage swings to achieve fast transition times, minimize power dissipation, and improve noise immunity.

Applications Information

Aquisition Controls

The MAX3953 has two phase-detector circuits, a Bang-Bang phase detector to lock the VCO to the serial input data (BB_PD), and a phase detector to lock the VCO to the reference clock (REF_PD). The pull-in range for the REF_PD is wide enough to accomodate the VCO turning range across the two valid data rates, while the pull-in range for the BB PD is narrow. The REF PD is activated by CLKSEL = HIGH. The BB_PD is activated by CLKSEL = LOW. For the MAX3953 CDR to lock to the serial input data, the frequency of the VCO must be pulled within 500ppm of the input data rate by first locking the VCO to the reference clock (RECLK) via the REF_PD. Once the VCO is within 500ppm, control can be transferred to the BB_PD.

For normal operation, connect the SYNC ERR output to the CLKSEL input. This will force CLKSEL high when the MAX3953 frequency detector indicates that the VCO frequency is more than 500ppm from the REFLECK frequency. Once the VCO is pulled to within 500ppm of the REFCLK frequency, SYNC_ERR (and thus CLKSEL) will go low and the MAX3953 will lock to the SDI data stream.

If a loss-of-signal (LOS) input from the system is available to the MAX3953, a clock holdover operation can be implemented by connecting the LOS output to the LOS_IN input. This will force the PLL to lock to REFCLK whenever the incoming data is lost. This keeps the frequency of PCLKO from drifting during a loss-of-signal condition. If the LOS signal from the system is not available, or if the clock-holdover mode is not required, the LOS_IN must be connected to V_{CC} to disable the function.

Consecutive Identical Digits (CIDs)

The MAX3953 has a low phase and frequency drift in the absence of data transitions. As a result, long runs of consecutive zeros and ones can be tolerated while maintaining a BER of 1×10^{-12} . The CID tolerance is tested using a 2¹³ - 1 pseudorandom bit stream (PRBS), substituting a long run of zeros to simulate worst case. A CID tolerance of greater than 2,000 bits is typical.

Exposed-Pad Package

The exposed pad, 68-pin QFN incorporates features that provide a very low thermal-resistance path for heat removal from the IC. The pad is electrical ground on the MAX3953 and should be soldered to the circuit board for proper thermal and electrical performance. See Maxim Application Note HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages for further information.

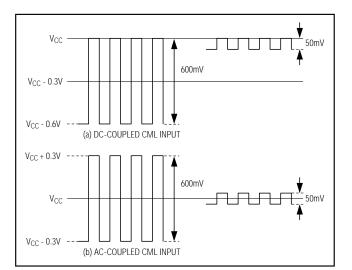


Figure 1. Input Amplitude

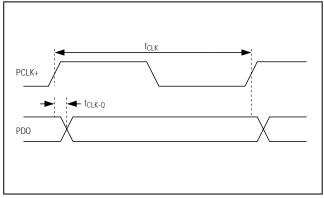


Figure 3. Timing Parameters

Layout Techniques

For best performance, use good high-frequency layout techniques. Filter voltage supplies, keep ground connections short, and use multiple vias where possible. Use controlled-impedance transmission lines to interface with the MAX3953 high-speed inputs and outputs. Power-supply decoupling should be placed as close to the V_{CC} as possible. To reduce feed-through, isolate input signals from output signals.

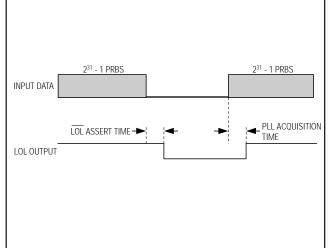
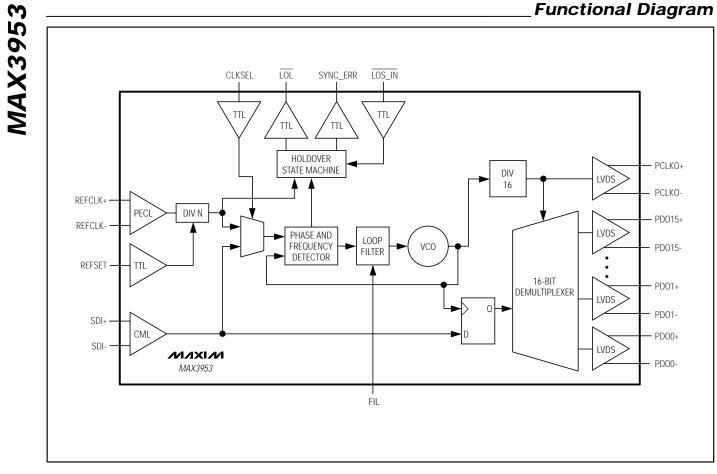
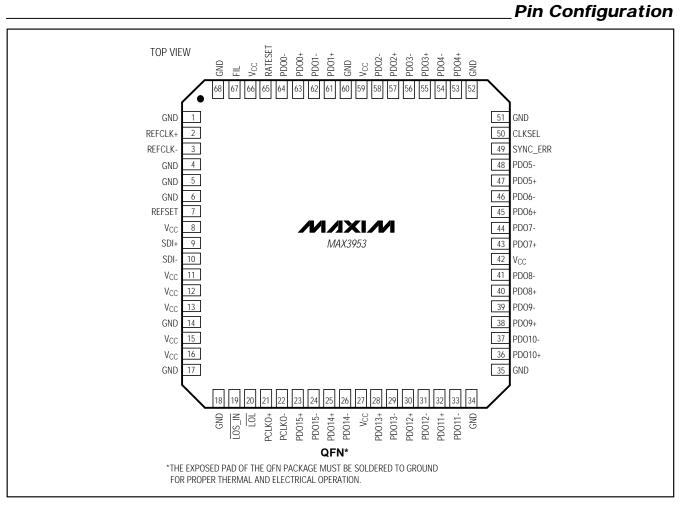
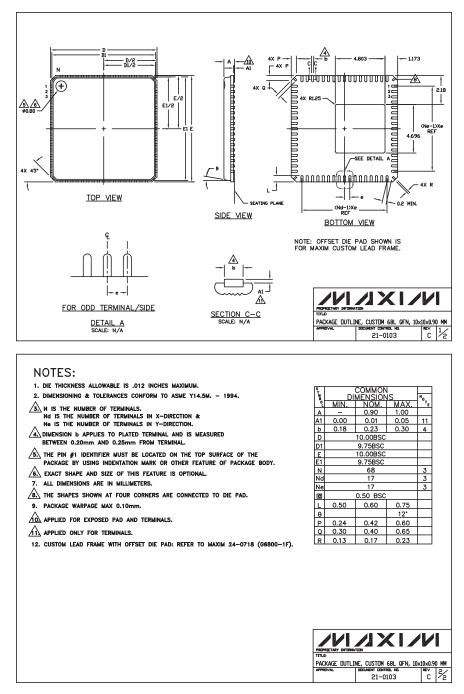




Figure 2. LOL Assert and Acquisition Time

Functional Diagram



_Chip Information

TRANSISTOR COUNT: 11,612 PROCESS: SIGE BIPOLAR MAX3953

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

10

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

						E	NGLISH • ???? • ??? • ??
	N		[SITE	PART NO. SEARCH
HAT'S NEW PRODUC	CTS SOLU	TIONS	DESIGN	APPNOTES	SUPPORT	BUY	COMPANY MEMBERS
				IAX395			
			Part	Number 1	able		
within one bu 4. Part number full data shee 5. * Some pack product uses	usiness day suffixes: T et or Part N kages have S.	or T&R = aming Co	tape and nventions.	reel; + = Roh	IS/lead-free; #	= RoHS/lead	ng parts, usually d-exempt. More: See hich variation the
Part Number	Free Sample	Buy	Packag				
	Sample	Direct	Tuckug	e: TYPE PINS DRAWING	SIZE CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX3953UGK-TD	Sumple	Direct	Tuckug				
MAX3953UGK-TD MAX3953UGK-D		Direct	QFN;68 p Dwg: 21-		CODE/VAR *	0C to +85C	Materials Analysis
			QFN;68 p Dwg: 21-	DRAWING bin;10x10x0.9 0103D (PDF)	CODE/VAR *	0C to +85C	Materials Analysis RoHS/Lead-Free: No RoHS/Lead-Free: No
MAX3953UGK-D			QFN;68 p Dwg: 21- Use pkgc	DRAWING bin;10x10x0.9 0103D (PDF)	CODE/VAR *	0C to +85C	Materials Analysis RoHS/Lead-Free: No RoHS/Lead-Free: No