SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197, SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197, SN74S1

SDLS077

OCTOBER 1976-REVISED MARCH 1988

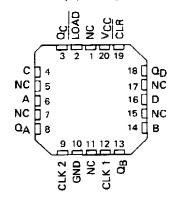
- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- Fully Independent Clear Input
- Input Clamping Diodes Simplify System Design
- Output Q_A Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

TYPES	GUARAI COUNT FRI		TYPICAL
	CLOCK 1	CLOCK 2	POWER DISSIPATION
'196, '197	0-50 MHz	0-25 MHz	240 mW
'LS196, 'LS197	0-30 MHz	0-15 MHz	80 mW
'\$196, 'S197	0-100 MHz	0-50 MHz	375 mW

description

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.


These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmission-line effects and simplify system design. These circuits are compatible with most TTL logic families. Series 54, 54LS, and 54S circuits are characterized for operation over the full military temperature range of $-55^{\circ}\mathrm{C}$ to 125°C; Series 74, 74LS, and 74S circuits are characterized for operation from 0°C to 70°C.

SN54196, SN54LS196, SN54S196, SN54197, SN54LS197, SN64S197...J OR W PACKAGE SN74196, SN74197...N PACKAGE SN74LS196, SN74S196, SN74LS197, SN74S197...D OR N PACKAGE (TOP VIEW)

LOAD I	U14D VCC
$\mathbf{a}_{\mathbf{C}} \square^2$	13 CLR
C □3	12 QD
A □4	ם 🕽 וי
Ω⊿ □5	10ДВ
CLK 2 6	эДов
GND 🔯 7	8 CLK 1

SN54LS196, SN54S196, SN54LS197, SN54S197...FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols[†]

'197, 'LS197, 'S197 '196, 'LS196, 'S196 LOAD (1) CLR (13) CLR 1131 CT - 0 CLK1 (8) (8) DIV2 CLK1 A (4) A (4) QA 10 10 CLK2 (6) (6) (9) B (10) -Qa -QR (10) (2) 121 -Qc (3) -ac an. ·Ωn (11)

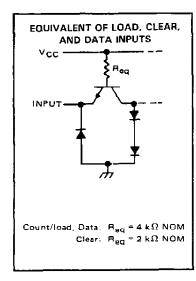
Pin numbers shown are for D, J, N, and W packages.

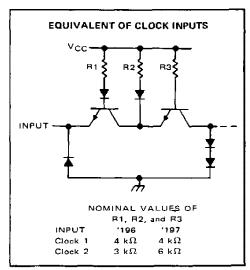
[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

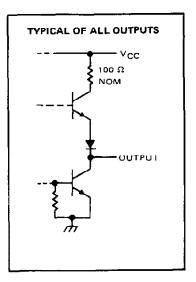
SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197, SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197, SN74S1

typical count configurations

'196, 'LS196, and 'S196 typical count configurations and function tables are the same as those for '176.


'197, 'LS197, and 'S197 typical count configurations and function tables are the same as those for '177.


logic diagrams


'196, 'L\$196, and '\$196 logic diagrams are the same as those for '176.

'197, 'LS197, and 'S197 logic diagrams are the same as those for '177.

schematics of inputs and outputs

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .									-							7 V
Input voltage															. 6	5.5 V
Interemitter voltage (see Note 2) .																5.5 V
Operating free-air temperature range:	SN54196,	SN5	4197	' Cire	uits							-5	i5°	C t	o 1	25°C
	SN74196,															
Storage temperature range , .																

NOTES: 1. Voltage values are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the Clear and Load inputs.

recommended operating conditions

		SN54	4196, SN	54197	SN74	196, SN7	4197	
		MIN	NOM	MAX	MIN	NOM	MAX	רואט
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
0	Clock-1 input	0		50	0		50	
Count frequency	Clock-2 input	0		25	0		25	MH:
	Clock-1 input	10			10			
B. C. C. C.	Clock-2 input	20			20			1
Pulse width, t _w	Clear	15			15		•	ns
	Load	20			20			
lance baddelen a desa Nova 21	High-level data	tw(load)			tw(load)			
Input hold time, th (see Nate 3)	Low-level data	t _{w{load}}			tw(foad)			ns
January and January 1	High-level data	10			10			
Input setup time, t _{su} (see Note 3)	Low-level data	15			15			ns
Count enable time, ten (see Note 4)		20			20			ns
Operating free-air temperature, TA		-55		125	0		70	,°C

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which
 interval the count/load and clear inputs must both be high to ensure counting.

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	1	TEST CONDITIO	NICT	SN54	196, SN	74196	SN54	197, SN	74197	
	TATIONIL 121		TEST CONDITIO	149,	MIN	TYP‡	MAX	MIN	TYP‡	MAX	רומט
v_{IH}	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN, I _I = -12	пА			-1.5	1		-1.5	V
νон	High-level output voltage	e	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OH} = -8		2,4	3.4		2.4	3.4		v
VoL	Low-level output voltage	!	V _{CC} = MIN, V _{1H} = 2 \ V _{1L} = 0.8 V, I _{OL} = 16			0.2	0.4		0.2	0.4	V
Ч	Input current at maximu	m input voltage	V _{CC} = MAX, V ₁ = 5.5 \	/	1		1			1	mΑ
		Data, Load					40	 		40	
lін	High-level input current	Clear, clock 1	VCC = MAX, VI = 2.4 \	/			80			80	μА
		Clack 2					120			80	
	_	Data, Load					-1.6		****	-1.6	
1	Law law line and a surrent	Clear],, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-3.2			-3.2	ı
ΊL	Low-level input current	Clock 1	VCC = MAX, VI = 0.4 \	,			-4.8			-4.8	mΑ
		Clock 2	7				-6.4			-3.2	ĺ
laa	Short-circuit output curr	ant 8	V	SN54'	-20		-57	-20		-57	
os	Short-circuit output curr	ents	VCC = MAX	SN74'	-18		57	-18		-57	mΑ
Icc_	Supply current		VCC = MAX, See Note	5		48	59		48	59	mΑ

NOTE 5: ICC is measured with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER#	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	ı	N5419 N7419		1	N5419		UNIT
	(1141 01)	10011 017		MIN	TYP	MAX	MIN	TYP	MAX	1
fmax	Clock 1	QA		50	70		50	70		MHz
tPLH	Clock 1	Q _A			7	12		7	12	
^t PHL	GIOCK !	<u> </u>			10	15		10	15	ns
₹PLH	Clock 2	ΩB			12	18		12	18	
^t PHL	GIOLK 2	GB			14	21		14	21	ns
tPLH .	Clock 2	00			24	36		24	36	
tPHL	CIOCK 2	Q _C	$C_L = 15 \text{pF},$		28	42		28	42	ns
†PLH	Clock 2	Q _D	$R_L = 400 \Omega$		14	21		36	54	
^t PHL	Clock 2	40	See Note 6		12	18		42	63	ns
tpLH	A, B, C, D	α _A , α _B , α _C , α _D			16	24		16	24	
t _{PHL}	7, 5, 0, 5	αχ, αβ, αC, αδ			25	38		25	38	กร
†PLH	Load	Any			22	33		22	33	
tPHL	2080	Evily .			24	36		24	36	ns
^t PHL	Clear	Any			25	37		25	37	ns

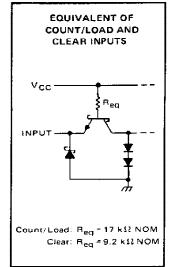
 $^{\#}f_{\text{max}} = \text{maximum count frequency.}$

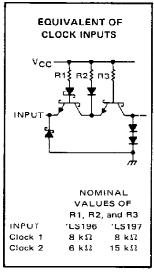
NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that testing f_{max}, V_{IL} = 0.3 V.

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

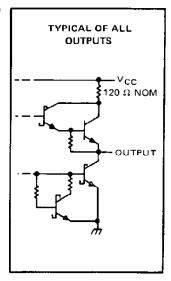
[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.


¹⁰A outputs are tested at I_{OL} = 16 mA plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.


tp_H = propagation delay time, low-to-high-level output.


tpHL ≡ propagation delay time, high-to-low-level output.


SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			7 V
Input voltage			5.5 V
Operating free-air temperature range:	SN54LS196, SN54LS197	Circuits	-55°C to 125°C
•	SN74LS196, SN74LS197	Circuits	0°C to 70°C
Storage temperature range			-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS1	96, SN5	4LS197	SN74LS1	96, SN7	4LS197	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
IOH	High-level output current			-	-400			-400	μА
loL	Low-level output current				4			В	mΑ
	Count frequency	Clock-1 input	0		30	0		30	
	Count frequency	Clock-2 input	0		15	0		15	MHz
		Clock-1 input	20			20			
	Pulse width	Clock-2 input	30			30			
t _w	Fulse Width	Clear	15			15			ns
		Load	20			20	•		
	Input hold time, (see Note 3)	High-level data	tw(loai	d)		tw(loa	d)		
th	imput noid time, isee Note 3/	Low-level data	tw(load	1)		tw(loa	d١		пs
	1	High-level data	10		*****	10	•		
^t su	Input setup time, (see Note 3)	Low-level data	15			15			ns
		Clock 1	30			30		1	
^t enable	Count enable time, (see Note 4)	Clock 2	50	•		50			ns
Тд	Operating free-air temperature	•	55		125	0		70	°C

NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.

4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					·	Sħ	154LS1	96	SM	174LS1	96	
	PARAMI	ETER	TES	ST CONDITIONS	S†	Sħ	154LS1	97	Sh	174LS1	97	UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
Vitt	High-level input v	oltage				2	·		_ 2			٧
VIL	Low-level input v	oitage	-					0.7			8.0	٧
v_{IK}	Input clamp volta	age	V _{CC} = MIN,	I _I = -18 mA				-1.5			−1.5	٧
VOH	High-level output	voltage	V _{CC} = MIN,			2.5	3.4		2,7	3,4		v
	· · · · · · · · · · · · · · · · · · ·			بر _{OH} = -400 س								
Voi	Low-level output	voltage	VCC = MIN,		IOL = 4 mA		0,25	0.4		0.25	0.4	l v
	·	-	VIL = VIL max		IOL = 8 mA [©]					0.35	0.5	
	Input current	Data, Load	!					0.1			0.1	
l ₁	at maximum	Clear, clock 1	VCC - MAX,	Vi = 5.5 V				0,2			0.2	mΑ
- 1	input voltage	Clock 2 of 'LS196	1.00	.,		_		0.4			0.4	
		Clock 2 of 'LS197						0.2			0.2	
		Data, Load						20			20	
1	High-level	Clear, clock 1	V _{CC} = MAX,	V ₁ = 2.7.V				40			40	μΑ
ΉН	input current	Clock 2 of 'LS196	VCC - IWAA,	V] - 2.7 V				80			80	μ
		Clock 2 of 'LS197						40			40	
		Data, Load						-0.4			-0.4	
	Low-level	Clear						-0.8			-0.8	
HL	Input current	Clock 1	VCC = MAX,	V _j = 0.4 V				-2.4			-2.4	mΑ
	inpat carrent	Clock 2 of 'LS196						-2.8			-2.8	
		Clock 2 of 'LS197					-	-1.3			-1.3	
los	Short-circuit outp	out current§	VCC = MAX			-20		-100	-20	, and the second	-100	mΑ
Icc	Supply current		V _{CC} = MAX,	See Note 5			16	27		16	27	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 5. I_{CC} is measured with all inputs grounded and all outputs open.

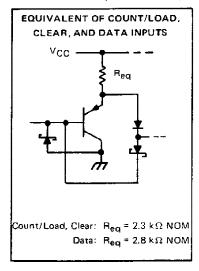
switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

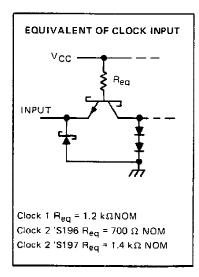
PARAMETER#	FROM (INPUT)	то (оитрит)	TEST CONDITIONS	·	154LS1 174LS1		I	154 LS1 174 LS1		דומט
	(HVPO1)	(0017017		MIN	TYP	MAX	MIN	TYP	MAX	1
f _{max}	Clock 1	Q _A		30	40		30	40		MHz
t P LH	Clock 1	QA			8	15		8	15	ns
[†] PHL	CIOCK	υд			13	20		14	21	
^t PLH	Clock 2	α _B			16	24		12	19	ns
tPHL.	01002				22	33		23	35	113
[†] PLH	Clock 2	0-	C _L = 15 pF,		38	57		34	51	п\$
^t PHL	CIOCK 2	QC			41	62		42	63	113
[†] PLH	Clock 2	0-	R _L = 2 kΩ, See Note 6		12	18		55	78	
^t PH↓	CIOCK 2	g _D	See Note 6		30	45		63	95	ns
ФLH					20	30		18	27	
tPHL	A, B, C, D	QA, QB, QC QD			29	44		29	44	ns
^t PLH	Load	Any			27	41		26	39	
tPHL	LOAG	Any			30	45		30	45	ns.
tpH L	Clear	Any			34	51		34	51	ns

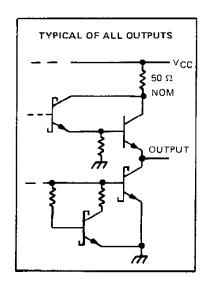
[#]f_{max} ≡ maximum count frequency.

NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that $t_f \le 15$ ns, $t_f \le 6$ ns, and $V_{ref} = 1.3$ V (as opposed to 1.5 V).

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.


^{\$}Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


^{*} QA outputs are tested at specified IQL plus the limit value of I_|L for the clock-2 input. This permits driving the clock-2 input while maintaining full fan-out capability.


tp_{LH} ≡ propagation delay time, low-to-high-level output, tp_{HL} ≡ propagation delay time, high-to-low-level output.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)																			7 V
Input voltage																			
Operating free-air temperature range	: SN	N54	519	6,	SNS	54S	197	' Cir	cuit	5						-55	°C to	12	25°C
	SI	V74 3	S19	6,	SN:	74S	197	' Cir	cuit	5							o°C	to 7	O°C
Storage temperature range											-					65	°C to	15	o°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54	S196, SN5	4S197	SN745	S196, SN7	4\$197	דומט
		MIN	MOM	MAX	MIN	NOM	MAX	וואט ך
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL				20			20	mA
Clark former	Clock-1 input	0		100	0		100	MHz
Clock frequency	Clock-2 input	0		50	0		50	IVITIZ
	Clock-1 input	5			5			
8.1	Clack-2 input	10			10]
Pulse width, t _W	Clear	30			30		•	ns
	Load	5			5			1
leant bald disease of the News 20	High-level data	31			31			
Input hold time, th (see Note 3)	Low-level data	31			31			ns
January Simo & Jana Nata 2)	High-level data	61			61			
Input setup time, t _{su} (see Note 3)	Low-level data	61			61		-	ns
Count enable time, ten (see Note 4)		12			12			ns
Operating free-air temperature, TA		-55		125	0		70	°c

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - 4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted).

PARAMETER		TES	SN54S196, SN74S196			SN54S197, SN74S197			UNIT			
			MIN	MIN TYP\$	MAX	MIN	TYP#	MAX				
V _{fH}						2			2			V
VIL								0.8			0.8	V
Vik		V _{CC} = MIN,	I _I = -18 mA					-1.2			-1.2	V
Voн		VCC = MIN,	V _{IH} = 2 V,		548	2.5	3.4		2.5	3.4		<u>,, </u>
νон	•		IOH = -1 mA		745	2.7	3.4	2.7	3.4		٧	
VOL		V _{CC} = MIN, I _{OL} = 20 mA ¢	V _{IH} = 2 V,	V _{IL} = ().8 V.			0.5			0.5	٧
1 ₁		V _{CC} = MAX,	V _I ≈ 5.5 V			1		1			1	mA
ЧН	Clock 1, clock 2	V _{CC} = MAX,	V ₁ = 2.7 V					150			150	
·11 H	All other inputs] *CC !!!/#/X,	• • 2.5 • .				50			50		μΑ
L.	Data, Load Clear	V _{CC} = MAX,	V 0 EV					-0.75		-	- 0.75	mΑ
IIL	Clock 1	VCC - MAA,	V - 0.5 V					-8			8	mΑ
	Clock 2]					-10			-6	mΑ	
105§	* * * *	V _{CC} = MAX				-30		-110	-30		-110	mA
lcc		V _{CC} = MAX,	See Note 5		54S		75	110		75	110	A
.00		VCC MAX,			74\$		75	75 120		75	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

NOTE 5: ICC is measured with all input grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER#	(FROM	TO (OUTPUT)	TEST CONDITIONS	SN54S196, SN74S196			SN54S197, SN74S197			UNIT
_	(INPUT)			MIN	TYP	MAX	MIN	TYP	MAX	
fmax	Clock 1	a _A		100	140		100	140	٠	MHz
^t PLH	Clack 1	l 0. 7			5	10		5	10	ns
^t PHL	CIOCK	Q _A		[6	10		6	10	
[†] P L H	Clock 2	QΒ			5	10		5	10	
^t PHL	GIOCK 2]			8	12		8	12	
^t PLH	Clock 2	00			12	18		12	18	ns
^t PHL	CIOCK Z	Q _C	R_L = 280 Ω , C_L = 15 pF,		16	24		15	22	
tPLH	Clock 2	a _D	See Note 7		5	10		18	27	
^t PHL	CIOCK 2	-0			8	12		22	33	
[†] PLH	A,B,C,D	a_A, a_B, a_C, a_D			7	12		7	12	
[†] PHL	A,0,0,0	TAXABIACIAN			12	18		12	18	ns
^t PLH	Load	Any			10	18	i	10	18	
^t PHL	wau] ^'''y			12	18		12	18	ns
^t PHL	Clear	Any			26	37		26	37	ns

 $^{\#}f_{max} = maximum count frequency.$

NOTE 7: Load circuit, input conditions, and voltage waveforms are the same as those shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

¶ Q_A outputs are tested at $I_{OL} = 20 \text{ mA}$ plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54S/74S loads.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

 $t_{PLH} \equiv propagation delay time, low-to-high-level output.$

tpHL = propagation delay time, high-to-low-level output.

PACKAGE OPTION ADDENDUM

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN54196J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54196J	Samples
SN54197J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54197J	Samples
SNJ54196J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54196J	Samples
SNJ54197J	ACTIVE	CDIP	J	14	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54197J	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

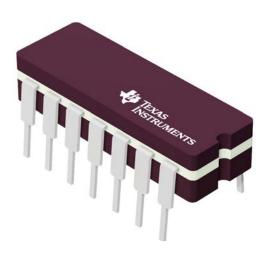
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

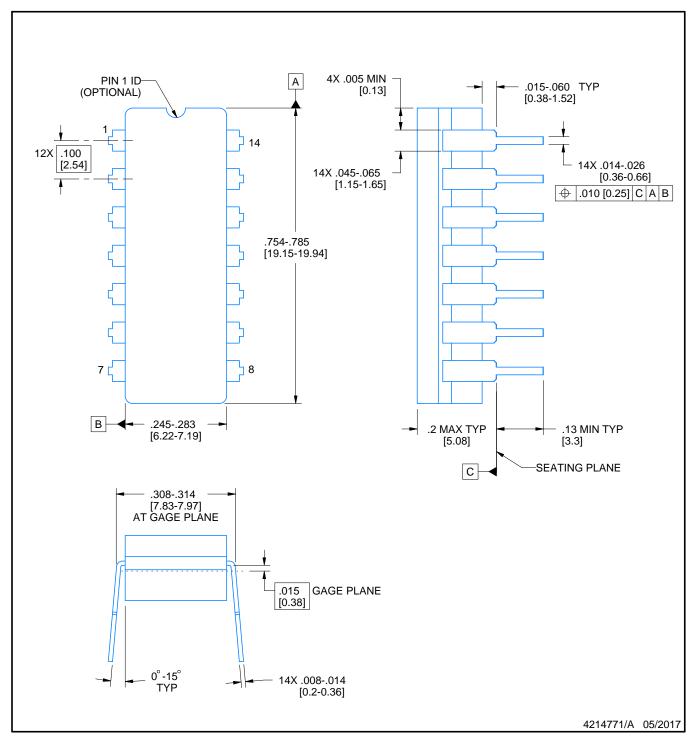


PACKAGE OPTION ADDENDUM

6-Feb-2020

In no event shall TI's liabilit	ty arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G

CERAMIC DUAL IN LINE PACKAGE

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

CERAMIC DUAL IN LINE PACKAGE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated