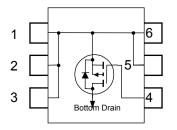


FDC699P

P-Channel 2.5V PowerTrench® MOSFET

General Description

This P-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V-12V).


Applications

- Battery management
- Load Switch
- Battery protection

Features

- -7 A, -20 V $R_{DS(ON)} = 22 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 30 \text{ m}\Omega$ @ $V_{GS} = -2.5 \text{ V}$
- High performance trench technology for extremely low $R_{\ensuremath{\mathsf{DS}}(\ensuremath{\mathsf{ON}})}$
- · Fast switching speed
- FLMP SuperSOT-6 package: Enhanced thermal performance in industry-standard package size

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		-20	V	
V _{GSS}	Gate-Source Voltage		±12	V	
I _D	Drain Current - Continuous	(Note 1a)	-7	А	
	– Pulsed		-40		
P _D	Power Dissipation	(Note 1a)	2	W	
		(Note 1b)	1.5		
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range	-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	60	°C/W
		(Note 1b)	111	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.5	

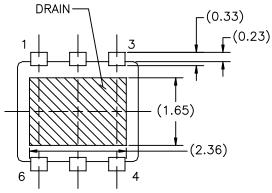
Package Marking and Ordering Information

Device Marking Device		Reel Size	Tape width	Quantity
.699 FDC699P		7"	8mm	3000 units

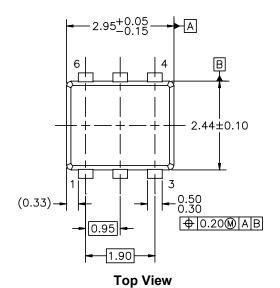
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	-1	ı	I	l	ı
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	-20			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.6	-0.9	-1.5	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = $-250 \mu A$, Referenced to $25^{\circ}C$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -7 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -6 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -7 \text{ A}, T_J = 125^{\circ}\text{C}$		14 21 17	22 30 31	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -7 \text{ A}$		30		S
Dynamic	Characteristics		•	•		
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$		2640		pF
Coss	Output Capacitance	f = 1.0 MHz		560		pF
C _{rss}	Reverse Transfer Capacitance	7		280		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		3.6		Ω
Switchin	g Characteristics (Note 2)		•	•		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A},$		16	28	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		11	19	ns
t _{d(off)}	Turn-Off Delay Time	1		75	120	ns
t _f	Turn-Off Fall Time	7		41	65	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_{D} = -7 \text{ A},$		27	38	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -5 \text{ V}$		5		nC
Q _{gd}	Gate-Drain Charge	1		7		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain–Source				-1.6	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \qquad I_S = -1.6 \text{ A (Note 2)}$		-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -7 A,		28		ns
	Reverse Recovery Charge	$d_{iF}/d_{t} = 100 \text{ A/}\mu\text{s}$		14		nC

Notes: 1. $R_{0,lA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{0,lC}$ is guaranteed by design while $R_{0,lCA}$ is determined by the user's board design.

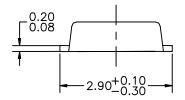
a) 60°C/W when mounted on a 1in² pad of 2 oz copper



o) 111°C/W when mounted on a minimum pad of 2 oz copper


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


Dimensional Outline and Pad Layout

Bottom View

0.85 0.65 SEATING PLANE

Recommended Landing Pattern

Typical Characteristics

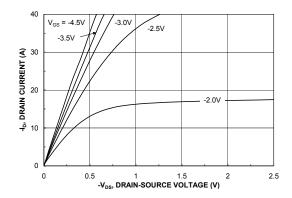


Figure 1. On-Region Characteristics.

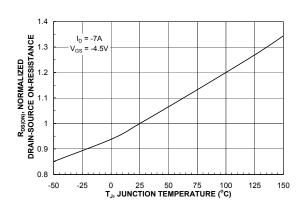


Figure 3. On-Resistance Variation withTemperature.

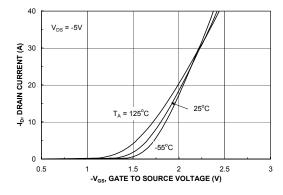


Figure 5. Transfer Characteristics.

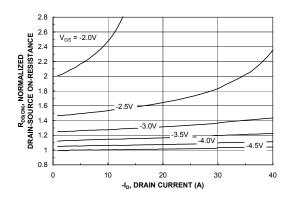


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

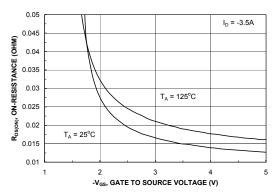


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

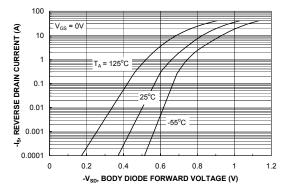
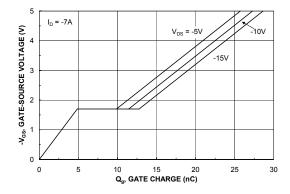



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

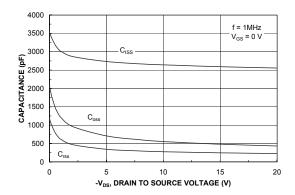


Figure 7. Gate Charge Characteristics.

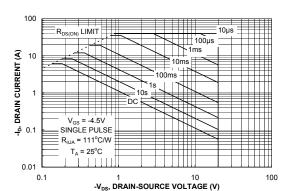


Figure 8. Capacitance Characteristics.

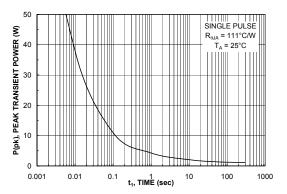


Figure 9. Maximum Safe Operating Area.

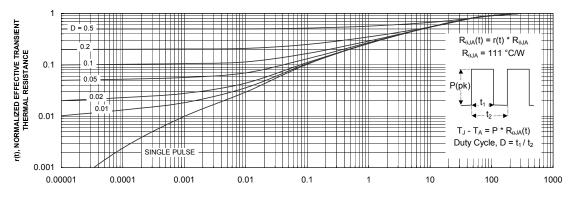


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT Quiet Series™	ISOPLANAR™	РОР™	SuperFET™
ActiveArray™	FAST®	LittleFET™	Power247™	SuperSOT™-3
Bottomless™	FASTr™	MICROCOUPLER™	PowerTrench®	SuperSOT™-6
CoolFET™	FPS™	MicroFET™	QFET®	SuperSOT™-8
CROSSVOLT™	FRFET™	MicroPak™	QS™	SyncFET™
DOME™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics™	TinyLogic [®]
EcoSPARK™	GTO™ .	MSX TM	Quiet Series™	TINYOPTO™
E ² CMOS TM	HiSeC™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	I ² C TM	OCX^{TM}	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	UltraFET®
Across the board	d. Around the world.™	OPTOLOGIC®	SMART START™	VCX™
The Power France		OPTOPLANAR™	SPM TM	
Programmable A		PACMAN™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Search:

Go

DATASHEETS, SAMPLES, BUY

Home >> Find products >>

FDC699P

P-Channel 2.5V Power Mosfet MOSFET Recommend FDC699P F077

Contents

- General description
- Features
- Applications
- Product status/pricing/packaging
- Order Samples
- Models
- Qualification Support

General description

This P-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).

back to top

Features

- -7 A, -20V R_{DS(ON)} = 22 mOhm @ VGS = -4.5 V $R_{DS(ON)} = 30$ mOhm @ VGS = -2.5 V
- High performance trench technology for extremely low R_{DS(ON)}
- Fast switching speed
- FLMP SuperSOT-6 package: Enhanced thermal performance in industry-standard package size

back to top

Applications

- Battery management
- Load Switch
- Battery protection

Datasheet Download this

datasheet

e-mail this datasheet

This page

Print version

This product

Use in FETBench Analysis

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

back to top

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FDC699P	Not recommended for new designs	Ø	\$0.45	SSOT-6 FLMP	6	TAPE REEL	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .699
FDC699P_F077	Full Production	Full Production	\$0.57	SSOT-6 FLMP	6	TAPE REEL	Line 1: &E&Y (Binary Calendar Year Coding) Line 2: .699

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FDC699P is available. Click here for more information .

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date			
	PSPICE						
SSOT-6 FLMP-6 <u>Electrical</u>		25°C to 125°C	Orcad 9.1	Jan 6, 2004			

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FDC699P
FDC699P_F077

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |